Technische Beschreibung

NTP/SINEC H1 LAN Karte

Modell 7273 und 7273RC

für die Gehäuseversionen

1HE / 3HE / DIN-Rail

DEUTSCH

Version: 07.00 – 05.09.2017

SET
Gültig für Version: 07.xx

IMAGE
Version: 07.xx

FIRMWARE
Version: 02.xx
**Versionsnummern (Firmware / Beschreibung)**

Der Begriff **SET** definiert die feste Verknüpfung zwischen Image-Version in Verbindung mit der zugehörigen H8 Firmware-Version.

Die ersten beiden Stellen der Versionsnummer der Technischen Beschreibung, der **SET**-Version und der Image-Version **MÜSSEN ÜBEREINSTIMMEN**! Sie bezeichnen die funktionale Zusammengehörigkeit zwischen Gerät, Software und Technischer Beschreibung.

Die Versionsnummer der Image und der H8 Software ist im WebGUI der Karte 7273 und 7273RC auslesbar (siehe KAPITEL 6.3.5.1 Geräte Information und KAPITEL 6.3.5.2 Hardware Information).

Die beiden Ziffern nach dem Punkt der Versionsnummer bezeichnen Korrekturen der Firmware und/oder Beschreibung, die keinen Einfluss auf die Funktionalität haben.

**Download von Technischen Beschreibungen**

Alle aktuellen Beschreibungen unserer Produkte stehen über unsere Homepage im Internet zur kostenlosen Verfügung.

Homepage: [http://www.hopf.com](http://www.hopf.com)
E-mail: info@hopf.com

**Symbole und Zeichen**

- **Betriebssicherheit**
  Nichtbeachtung kann zu Personen- oder Materialschäden führen.

- **Funktionalität**
  Nichtbeachtung kann die Funktion des Systems/Gerätes beeinträchtigen.

- **Information**
  Hinweise und Informationen
**Sicherheitshinweise**


Bei Nichteinhaltung erlischt jeglicher Anspruch auf Garantie und Gewährleistung für das Gerät.

Für eventuell auftretende Folgeschäden wird keine Haftung übernommen.

**Gerätesicherheit**

Dieses Gerät wurde nach dem aktuellsten Stand der Technik und den anerkannten sicherheitstechnischen Regeln gefertigt.

Die Montage des Gerätes darf nur von geschulten Fachkräften ausgeführt werden. Es ist darauf zu achten, dass alle angeschlossenen Kabel ordnungsgemäß verlegt und fixiert sind. Das Gerät darf nur mit der auf dem Typenschild angegebenen Versorgungsspannung betrieben werden.

Die Bedienung des Gerätes darf nur von unterwiesenem Personal oder Fachkräften erfolgen.

Reparaturen am geöffneten Gerät dürfen nur von der Firma hopf Elektronik GmbH oder von entsprechend ausgebildetem Fachpersonal ausgeführt werden.

Vor dem Arbeiten am geöffneten Gerät oder vor dem Auswechseln einer Sicherung ist das Gerät immer von allen Spannungsquellen zu trennen.

Falls Gründe zur Annahme vorliegen, dass die einwandfreie Betriebssicherheit des Gerätes nicht mehr gewährleistet ist, so ist das Gerät außer Betrieb zu setzen und entsprechend zu kennzeichnen.

Die Sicherheit kann z.B. beeinträchtigt sein, wenn das Gerät nicht wie vorgeschrieben arbeitet oder sichtbare Schäden vorliegen.

**CE-Konformität**

Dieses Gerät erfüllt die Anforderungen der EU-Richtlinien 2014/30/EU "Elektromagnetische Verträglichkeit" und 2014/35/EU "Niederspannungsrichtlinie".

Hierfür trägt das Gerät die CE-Kennzeichnung (CE = Communautés Européennes = Europäische Gemeinschaften)

Das CE signalisiert den Kontrollinstanzen, dass das Produkt den Anforderungen der EU-Richtlinie - insbesondere im Bezug auf Gesundheitsschutz und Sicherheit der Benutzer und Verbraucher - entspricht und frei auf dem Gemeinschaftsmarkt in den Verkehr gebracht werden darf.
## Inhalt

<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Kartenbeschreibung 7273 und 7273RC</td>
<td>9</td>
</tr>
<tr>
<td>1.1 Unterschied zwischen den Karten 7273 und 7273RC</td>
<td>11</td>
</tr>
<tr>
<td>1.2 Baugruppenübersicht der Karten 7273(RC)</td>
<td>12</td>
</tr>
<tr>
<td>1.2.1 DIP-Schalter DS1</td>
<td>12</td>
</tr>
<tr>
<td>1.2.1.1 Funktionen des DIP-Schalter DS1 für Karte 7273</td>
<td>12</td>
</tr>
<tr>
<td>1.2.1.2 Funktionen des DIP-Schalter DS1 für Karte 7273RC</td>
<td>13</td>
</tr>
<tr>
<td>1.2.2 MAC-Adresse für ETH0</td>
<td>13</td>
</tr>
<tr>
<td>1.3 Karten-Frontblenden für die unterschiedlichen Gehäusevarianten</td>
<td>14</td>
</tr>
<tr>
<td>1.3.1 Funktionsübersicht der Frontblendenelemente</td>
<td>14</td>
</tr>
<tr>
<td>1.3.1.1 SEND LED (nicht bei DIN-Rail)</td>
<td>14</td>
</tr>
<tr>
<td>1.3.1.2 Reset-Taster (und Default-Taster)</td>
<td>14</td>
</tr>
<tr>
<td>1.3.1.3 NTP-Status LEDs (NTP/Stratum/Accuracy)</td>
<td>14</td>
</tr>
<tr>
<td>1.3.1.4 USB Buchse (Host)</td>
<td>15</td>
</tr>
<tr>
<td>1.3.1.5 RJ45 Buchse (ETH0)</td>
<td>15</td>
</tr>
<tr>
<td>1.3.1.6 Karten-Status LEDs (Operation/ERROR/Status last 24h)</td>
<td>15</td>
</tr>
<tr>
<td>1.3.1.6.1 Standard-Funktion</td>
<td>16</td>
</tr>
<tr>
<td>1.3.1.6.2 Funktion beim Betätigen des Reset-Tasters</td>
<td>16</td>
</tr>
<tr>
<td>1.3.1.6.3 Sonderfunktion für Update und Hardwareprobleme</td>
<td>17</td>
</tr>
<tr>
<td>1.3.1.7 Optional: aktiver 12V DC PPM (Minutenimpuls)</td>
<td>17</td>
</tr>
<tr>
<td>1.3.2 Frontblenden der Karten 7273 und 7273RC für 3HE / 19&quot; Baugruppenträger</td>
<td>18</td>
</tr>
<tr>
<td>1.3.3 Frontblende der Karte 7273 für 1HE / 19&quot; Baugruppenträger (Slim Line)</td>
<td>19</td>
</tr>
<tr>
<td>1.3.4 Frontblende der Karte 7273 für DIN-Rail (Hutschienengehäuse)</td>
<td>20</td>
</tr>
<tr>
<td>2 Systemverhalten der Karte 7273(RC)</td>
<td>21</td>
</tr>
<tr>
<td>2.1 Boot-Phase</td>
<td>21</td>
</tr>
<tr>
<td>2.2 NTP Regel-Phase (Stratum/Accuracy)</td>
<td>21</td>
</tr>
<tr>
<td>2.3 Reset- (Default) Taster</td>
<td>21</td>
</tr>
<tr>
<td>2.3.1 Karten-Reset</td>
<td>22</td>
</tr>
<tr>
<td>2.3.2 Karte in Factory-Default-Zustand versetzen (inkl. LAN-Parameter)</td>
<td>22</td>
</tr>
<tr>
<td>2.4 Firmware-Update</td>
<td>23</td>
</tr>
<tr>
<td>2.5 Karten-ERROR</td>
<td>24</td>
</tr>
<tr>
<td>3 Implementieren der Karte 7273(RC) in ein modulares hopf 19&quot; Basis-System</td>
<td>25</td>
</tr>
<tr>
<td>3.1 Handhabung der Karte / ESD Schutz</td>
<td>26</td>
</tr>
<tr>
<td>3.2 Allgemein - Einstellung der Kartennummer für den Einsatz im Basis-System</td>
<td>26</td>
</tr>
<tr>
<td>3.3 hopf Basis-System 6844, 6844RC und 6855 – nur Karte 7273</td>
<td>27</td>
</tr>
<tr>
<td>3.3.1 Einstellung der Kartennummer für Basis-System 68xx</td>
<td>27</td>
</tr>
<tr>
<td>3.4 hopf Basis-System 7001 – nur Karte 7273</td>
<td>28</td>
</tr>
<tr>
<td>3.4.1 Einstellung der Kartennummer für Basis-System 7001</td>
<td>28</td>
</tr>
<tr>
<td>3.5 hopf Basis-System 7001RC – nur Karte 7273RC</td>
<td>29</td>
</tr>
<tr>
<td>3.5.1 Einstellung der Kartennummer für Basis-System 7001RC</td>
<td>29</td>
</tr>
<tr>
<td>3.5.2 NTP Accuracy Meldung für Status- und Fehlermeldungen im System 7001RC</td>
<td>30</td>
</tr>
<tr>
<td>3.6 Herstellen der Netzwerkverbindung</td>
<td>30</td>
</tr>
<tr>
<td>4 Netzwerk-Konfiguration für ETH0 via LAN Verbindung über die hmc</td>
<td>31</td>
</tr>
</tbody>
</table>
5 Netzwerk-Konfiguration für ETH0 über das Basis-System ..........................34
  5.1 Eingabefunktionen Basis-Systeme 6844, 6844RC und 6855 (nur Karte 7273)........36
    5.1.1 Eingabe statische IPv4-Adresse / DHCP-Modus ........................................36
    5.1.2 Eingabe Gateway-Adresse .............................................................................37
    5.1.3 Eingabe Netzmase .........................................................................................37
      5.1.3.1 Eingabe Netzmase · Systeme 6844 und 6844RC ........................................37
      5.1.3.2 Eingabe Netzmase · System 6855 ...............................................................37
    5.1.4 Eingabe Control-Byte ....................................................................................38
      5.1.4.1 Bit 7-0 · Zurzeit ohne Funktion ...............................................................38
  5.2 Eingabefunktionen Basis-System 7001 (nur Karte 7273) .................................39
    5.2.1 Eingabe Control-Byte ....................................................................................39
      5.2.1.1 Bit 7-0 · Zurzeit ohne Funktion ...............................................................39
    5.2.2 Eingabe statische IPv4-Adresse / DHCP-Modus ...........................................40
    5.2.3 Eingabe Netzmase .........................................................................................41
    5.2.4 Eingabe Gateway-Adresse .............................................................................41
  5.3 Eingabefunktionen Basis-System 7001RC (nur Karte 7273RC) .........................41
    5.3.1 Eingabe statische IPv4-Adresse / DHCP-Modus ............................................42
    5.3.2 Eingabe Gateway-Adresse .............................................................................42
    5.3.3 Eingabe Netzmase .........................................................................................43
    5.3.4 Eingabe Control-Byte ....................................................................................43
      5.3.4.1 Bit 7-0 · Zurzeit ohne Funktion ...............................................................43
    5.3.5 Eingabe Parameterbyte 01 (zurzeit ohne Funktion) ........................................44
    5.3.6 Eingabe Parameterbyte 02 (zurzeit ohne Funktion) ........................................44
  5.4 Konfiguration in Hutschienen-Systemen (DIN-Rail) ...........................................44
  5.5 Konfiguration über hmc (hopf Management Console) Remote-Zugriff ...............44

6 HTTP/HTTPS WebGUI – Web Browser Konfigurationsoberfläche..........................45
  6.1 Schnellkonfiguration .........................................................................................45
    6.1.1 Anforderungen ..............................................................................................45
    6.1.2 Konfigurationsschritte ..................................................................................45
  6.2 Allgemein – Einführung ....................................................................................46
    6.2.1 LOGIN und LOGOUT als Benutzer ...............................................................47
    6.2.2 Navigation durch die Web-Oberfläche .........................................................48
    6.2.3 Eingeben oder Ändern eines Wertes ......................................................... 49
    6.2.4 Plausibilitätsprüfung bei der Eingabe ............................................................50
  6.3 Beschreibung der Registerkarten ......................................................................51
    6.3.1 GENERAL Registerkarte ...............................................................................51
    6.3.2 NETWORK Registerkarte .............................................................................52
      6.3.2.1 Host/Nameservice ..................................................................................53
        6.3.2.1.1 Hostname .......................................................................................53
        6.3.2.1.2 Default Gateway ...........................................................................53
        6.3.2.1.3 DNS-Server 1 & 2 ........................................................................53
      6.3.2.2 Netzwerkschnittstelle (Network Interface ETH0) ......................................54
        6.3.2.2.1 Default Hardware Address (MAC) ....................................................54
        6.3.2.2.2 Kunden Hardware Address (MAC) ......................................................54
        6.3.2.2.3 DHCP .............................................................................................55
        6.3.2.2.4 IP-Adresse .....................................................................................55
        6.3.2.2.5 Netzmase (Network Mask) .................................................................55
        6.3.2.2.6 Betriebsmodus (Operation Mode) .......................................................56
        6.3.2.2.7 Maximum Transmission Unit (MTU) ................................................56
      6.3.2.3 Routing .................................................................................................57
    6.3.2.4 Management (Management-Protocols – HTTP, SNMP etc.) ....................58
6.3.2.4.1 SNMPv2 / SNMPv3 ................................................................. 59
6.3.2.5 Time..................................................................................... 60
6.3.2.5.1 Synchronisationsprotokolle (Time-Protocols – NTP, SNTP etc.) ........................................ 60
6.3.2.5.2 SINEC H1 Uhrzeittelegramm (SINEC H1 time datagram) ................................................. 60
6.3.2.5.3 Sendezzeitpunkt des SINEC H1 Uhrzeittelegramm........................................................... 61
6.3.3 NTP Registerkarte..................................................................... 61
6.3.3.1 System Info............................................................................ 62
6.3.3.2 Kernel Info ........................................................................... 63
6.3.3.3 Peers .................................................................................. 64
6.3.3.4 Server Konfiguration............................................................... 65
6.3.3.4.1 Synchronisationsquelle (General / Synchronization source) ............................................. 65
6.3.3.4.2 NTP Syslog Nachrichten (General / Log NTP Messages to Syslog) ........................................ 65
6.3.3.4.3 Quarzbetrieb (Crystal Operation) ..................................................................................... 66
6.3.3.4.4 Broadcast / Broadcast Address ................................................................. 67
6.3.3.5.4 Broadcast / Authentication / Key ID .............................................................................. 67
6.3.3.4.6 Zusätzliche NTP Server (Additional NTP server).............................................................. 67
6.3.3.5 Erweiterte NTP Konfiguration (Extended Configuration) .................................................... 68
6.3.3.5.1 Unterdrückung von unspezifizierten NTP-Ausgaben (Block Output when Stratum Unspecified) .................................................................................................................. 68
6.3.3.5.2 NTP Zeitbasis (Timebase) ....................................................................................... 68
6.3.3.6 NTP Neustart (Restart NTP) ................................................... 70
6.3.3.7 Konfigurieren der NTP-Zugriffsbeschränkungen (Access Restrictions)...................... 70
6.3.3.7.1 NAT oder Firewall .............................................................................. 71
6.3.3.7.2 Blocken nicht autorisierter Zugriffe .............................................................................. 71
6.3.3.7.3 Client Abfragen erlauben .............................................................................. 72
6.3.3.7.4 Interner Clientschutz / Local Network ThreatLevel ....................................................... 72
6.3.3.7.5 Hinzufügen von Ausnahmen für Standardbeschränkungen ...................................................... 73
6.3.3.7.6 Optionen zur Zugriffskontrolle ............................................................................. 74
6.3.3.8 Symmetrischer Schlüssel (Symmetric Key) ......................................................... 75
6.3.3.8.1 Wofür eine Authentifizierung? .............................................................................. 75
6.3.3.8.2 Wie wird die Authentifizierung beim NTP-Service verwendet? ........................................ 75
6.3.3.8.3 Wie erstellt man einen Schlüssel? .............................................................................. 76
6.3.3.8.4 Wie arbeitet die Authentifizierung? .............................................................................. 76
6.3.3.9 Automatische Verschlüsselung (Autokey) ................................................. 77
6.3.4 ALARM Registerkarte .................................................................. 78
6.3.4.1 Syslog Konfiguration ................................................................ 78
6.3.4.2 E-mail Konfiguration ................................................................. 79
6.3.4.3 SNMP Konfiguration / TRAP Konfiguration ................................................. 80
6.3.4.4 Alarm Nachrichten (Alarm Messages) ................................................... 81
6.3.5 DEVICE Registerkarte .................................................................. 82
6.3.5.1 Geräte Information (Device Info) .................................................. 82
6.3.5.2 Hardware Information ............................................................... 83
6.3.5.3 Wiederherstellung der Werkseinstellungen (Factory Defaults) ............................................. 84
6.3.5.4 Wiederherstellung gesicherter Kundeneinstellungen (Custom Defaults) .................................. 85
6.3.5.5 Neustart der Karte (Reboot Device / Hardware Reset) .................................................... 86
6.3.5.6 Image Update & H8 Firmware Update ........................................... 87
6.3.5.6.1 Auswahl Image-Update .............................................................................. 88
6.3.5.6.2 Installation Image-Update .............................................................................. 89
6.3.5.7 Upload von Anwender SSL-Server-Zertifikat (Upload Certificate) .................................... 90
6.3.5.8 Spezieller Anwender-Sicherheitshinweis (Customized Security Banner) ................................ 90
6.3.5.9 Option F97273/PPM: Minutenimpulsänge (Minute pulse (PPM)) ............................................ 91
6.3.5.10 Produkt-Aktivierung ................................................................... 92
6.3.5.11 Diagnose Funktion .................................................................... 93
6.3.5.12 Passwörter (Master/Device) .......................................................... 94
6.3.5.13 Download von Konfigurationen / SNMP MIB ......................................................... 95

7 SSH- und Telnet-Basiskonfiguration ................................................... 96

8 Technische Daten ................................................................................. 97
9 Werkseinstellungen / Factory-Defaults Karte 7273(RC) ........................................ 99
  9.1 Netzwerk ........................................................................................................ 99
  9.2 NTP .................................................................................................................. 100
  9.3 ALARM ............................................................................................................ 100
  9.4 DEVICE ............................................................................................................ 100

10 Glossar und Abkürzungen .................................................................................... 101
  10.1 NTP spezifische Termini ................................................................................ 101
  10.2 Tally Codes (NTP spezifisch) ....................................................................... 101
      10.2.1 Zeitspezifische Ausdrücke ...................................................................... 102
  10.3 Abkürzungen .................................................................................................. 103
  10.4 Definitionen .................................................................................................... 104
      10.4.1 DHCP (Dynamic Host Configuration Protocol) ..................................... 104
      10.4.2 NTP (Network Time Protocol) ................................................................. 104
      10.4.3 SNMP (Simple Network Management Protocol) .................................. 105
      10.4.4 TCP/IP (Transmission Control Protocol / Internet Protocol) ............ 105
  10.5 Syslogmeldungen .......................................................................................... 106
  10.6 Genauigkeit & NTP Grundlagen .................................................................. 106

11 RFC Auflistung ...................................................................................................... 108

12 Auflistung der verwendeten Open-Source Pakete .............................................. 109
1 Kartenbeschreibung 7273 und 7273RC


Grundsätzlich sind die NTP/SINEC H1 LAN Karten 7273 und 7273RC in ihren Funktionen und Einsatzmöglichkeiten vollständig abwärtskompatibel mit den Karte 7271 und 7271RC.


Die Nachfolgekarten sind auch problemlos zur Erweiterung von hopf Uhrensystemen, in denen bereits Karten 7271 bzw. 7271RC verbaut wurden (Mischbetrieb), geeignet.

Die Karten 7273 und 7273RC sind mit einer 10/100 Base-T (autosensing) Ethernet Schnittstelle (ETH0) ausgestattet.


Die Karten 7273 und 7273RC werden mittels dem weltweit verbreiteten Zeitprotokoll NTP (Network Time Protocol) zur hoch genauen Synchronisation von Netzwerken verwendet. Folgende Synchronisationsprotokolle stehen zur Verfügung:

- NTP (inkl. SNTP)
- SINEC H1 Uhrzeittelegram
- Daytime
- Time


Je nach hopf Uhrensystem können mehrere dieser LAN Karten modular (auch nachträglich) implementiert werden.

Es stehen unterschiedliche Management- und Überwachungsfunktionen zur Verfügung (z.B. SNMP-Traps, E-mail Benachrichtigung, Syslog-messages)

Erhöhte Sicherheit über optionale Verschlüsselungsverfahren wie Symmetrischer Schlüssel, Autokey und Access Restrictions sowie die Deaktivierung nicht benutzter Protokolle stehen frei zur Verfügung.
Umfangreiche Parameter für individuelle Einsatzbedingungen werden über unterschiedliche Zugangs-/Konfigurations-Kanäle bereitgestellt:

- Vollständig konfiguriert werden die Karten via Ethernet mittels eines Web Browser über:
  - HTTP/HTTPS WebGUI (Graphical User Interface)
  - oder textbasierten Menüs via Telnet und SSH

Einige Basis-Funktionen der Karten:

Zeit Protokolle
- NTPv4 Server
- NTP Broadcast mode
- NTP Multicast mode
- NTP Client für weitere NTP Server (Redundanz)
- SNTP Server
- NTP Symmetric Key Kodierung
- NTP Autokey Kodierung
- NTP Access Restrictions
- PPS time source
- SINEC H1 Uhrzeittelegramm
- RFC-867 DAYTIME Server
- RFC-868 TIME Server

Netzwerk Protokolle
- HTTP/HTTPS
- DHCP
- Telnet
- SSH
- SNMPv2 / SNMPv3, SNMP Traps (MIB II, Private Enterprise MIB)
- NTP (inkl. SNTP)
- SINEC H1 Uhrzeittelegramm

Konfigurationskanal
- HTTP/HTTPS-WebGUI (Browser Based)
- Telnet
- SSH
- Externes LAN Konfigurations-Tool (hmc - Network Configuration Assistant)
  - hopf 7001RC System hmc, Tastatur und Anzeige – nur Karte 7273RC
  - hopf 7001 System Tastatur und Anzeige – nur Karte 7273
  - hopf 68xx System (3HE/Slim Line) Tastatur und Anzeige – nur Karte 7273
  - hmc Remote-Verbindung (Nur bei Basis-Systemen mit Remote-Funktion)
Ethernet-Schnittstelle

- Auto negotiate
- 10 Mbps half-/ full duplex
- 100 Mbps half-/ full duplex

Zusätzlich bei der Karte 7273RC

- Hot-Plug Funktionalität
- NTP Accuracy Meldung für Status- und Fehlermeldungen im System 7001RC

Features

- HTTP/HTTPS (status, control)
- SNMPv2 / SNMPv3, SNMP Traps (MIB-II, Private Enterprise MIB)
- E-mail Benachrichtigung
- Syslog Messages to External Syslog Server
- Update über TCP/IP
- Fail-safe
- Watchdog-Schaltung
- Power-Management
- System-Management
- Customized Security Banner

1.1 Unterschied zwischen den Karten 7273 und 7273RC

Die Karte 7273RC ist funktionsgleich mit der Karte 7273 jedoch für den Einsatz im System 7001RC konzipiert. Hierfür verfügt die Karte 7273RC zusätzliche über eine "Hot-Plug" Funktionalität sowie die entsprechende interne Schnittstellenfunktionalität für den Betrieb in einem hopf 7001RC Basis-System.

Die Karten 7273 und 7273RC dürfen ausschließlich in dafür geeignete Basis-Systeme eingebaut werden.

Die Karte 7273RC funktioniert ausschließlich im System 7001RC.

Da die Karten 7273 und 7273RC funktional nahezu gleich sind, wird in dieser Beschreibung nachfolgend die Bezeichnung 7273(RC) verwendet, wenn die Funktion bei beiden Karten identisch ist.

Ist eine Funktion nur bei einer von beiden Kartentypen verfügbar, wird nur die Bezeichnung der jeweiligen Karte verwendet.
1.2 Baugruppenübersicht der Karten 7273(RC)

1.2.1 DIP-Schalter DS1

In Abhängigkeit vom Kartentyp (7273 oder 7273RC) ist der DIP-Schalter DS1 unterschiedlich belegt.

1.2.1.1 Funktionen des DIP-Schalters DS1 für Karte 7273

Über den DIP-Schalter DS1 wird das Basis-System ausgewählt, in dem die Karte betrieben werden soll. Ebenfalls wird die Kartennummer im Basis-System eingestellt.

<table>
<thead>
<tr>
<th>DIP-Schalter DS1</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Auswahl des Basis-Systems 68xx bzw. 7001 (siehe Kapitel 3.3 + 3.4)</td>
</tr>
<tr>
<td>7</td>
<td>z.Zt. ohne Funktion</td>
</tr>
<tr>
<td>6</td>
<td>Sendezzeitpunkt des SINEC H1 Uhrzeittelegramms (siehe Kapitel 6.3.2.5.3)</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kartennummer im System 7001 / 68xx (siehe Kapitel 3.3.1 + 3.4.1)</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
1.2.1.2 Funktionen des DIP-Schalter DS1 für Karte 7273RC

Über den DIP-Schalter DS1 wird primär die Kartennummer im Basis-System eingestellt.

<table>
<thead>
<tr>
<th>DIP-Schalter DS1</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>z.Zt. ohne Funktion</td>
</tr>
<tr>
<td>7</td>
<td>Die NTP Accuracy Meldung der 7273RC wird im System 7001RC für die Generierung von Status- und Fehlermeldungen verwendet. (siehe Kapitel 3.5.2)</td>
</tr>
<tr>
<td>6</td>
<td>Sendezzeitpunkt des SINEC H1 Uhrzeittelegramms (siehe Kapitel 6.3.2.5.3)</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Kartennummer im System 7001RC (siehe Kapitel 3.5.1)</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1.2.2 MAC-Adresse für ETH0

Jede LAN-Schnittstelle ist im Ethernet über eine MAC-Adresse (Hardwareadresse) eindeutig identifizierbar.


MAC-Adressen der Firma hopf Elektronik GmbH beginnen mit 00:03:C7:xx:xx:xx.
1.3 Karten-Frontblenden für die unterschiedlichen Gehäusevarianten

1.3.1 Funktionsübersicht der Frontblendenelemente

In diesem Kapitel werden die einzelnen Frontblendenelemente und ihre Funktion beschrieben.

1.3.1.1 SEND LED (nicht bei DIN-Rail)

<table>
<thead>
<tr>
<th>SEND-LED (Gelb)</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>aus</td>
<td>Die Karte 7273(RC) ist nicht betriebsbereit.</td>
</tr>
<tr>
<td>an</td>
<td>Fehler auf der Karte 7273(RC).</td>
</tr>
</tbody>
</table>

Da die Hutschienen-Systeme (DIN-Rail) über keinen internen System-BUS verfügen, ist in der DIN-Rail Version keine SEND LED vorhanden.

1.3.1.2 Reset-Taster (und Default-Taster)

Der Reset-Taster ist mit einem dünnen Gegenstand durch die Bohrung in der Frontblende neben dem Aufdruck "Reset" zu betätigen (siehe **Kapitel 2.3 Reset- (Default) Taster**).

1.3.1.3 NTP-Status LEDs (NTP/Stratum/Accuracy)

<table>
<thead>
<tr>
<th>NTP-LED (Grün)</th>
<th>NTP-Dienst der Karte 7273(RC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>an</td>
<td>Normalfall, gestartet</td>
</tr>
<tr>
<td>aus</td>
<td>nicht gestartet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stratum1-LED (Grün)</th>
<th>Der NTP-Dienst der Karte 7273(RC) arbeitet mit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>an</td>
<td>Stratum 1</td>
</tr>
<tr>
<td>blinken</td>
<td>Stratum 2-15</td>
</tr>
<tr>
<td>aus</td>
<td>Stratum 16 (keinen Synchronisation von NTP Clients)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accuracy-LED (Grün)</th>
<th>Der NTP-Dienst der Karte 7273(RC) arbeitet mit Accuracy:</th>
</tr>
</thead>
<tbody>
<tr>
<td>an</td>
<td>high</td>
</tr>
<tr>
<td>blinken</td>
<td>medium</td>
</tr>
<tr>
<td>aus</td>
<td>low</td>
</tr>
</tbody>
</table>
1.3.1.4 USB Buchse (Host)

Der USB-Anschluss kann bei bestimmten Problemen, in Absprache mit dem hopf Support, für eine Systemwiederherstellung verwendet werden.

1.3.1.5 RJ45 Buchse (ETH0)

<table>
<thead>
<tr>
<th>10/100-LED (Grün)</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>aus</td>
<td>10 MBit Ethernet detektiert.</td>
</tr>
<tr>
<td>an</td>
<td>100 MBit Ethernet detektiert.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ink/act-LED (Gelb)</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>aus</td>
<td>Es besteht keine LAN-Verbindung zu einem Netzwerk.</td>
</tr>
<tr>
<td>an</td>
<td>LAN-Verbindung vorhanden.</td>
</tr>
<tr>
<td>blinken</td>
<td>Aktivität (senden / empfangen) an ETH0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pin-Nr.</th>
<th>Belegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tx+</td>
</tr>
<tr>
<td>2</td>
<td>Tx-</td>
</tr>
<tr>
<td>3</td>
<td>Rx+</td>
</tr>
<tr>
<td>4</td>
<td>nicht belegt</td>
</tr>
<tr>
<td>5</td>
<td>nicht belegt</td>
</tr>
<tr>
<td>6</td>
<td>Rx-</td>
</tr>
<tr>
<td>7</td>
<td>nicht belegt</td>
</tr>
<tr>
<td>8</td>
<td>nicht belegt</td>
</tr>
<tr>
<td>9</td>
<td>nicht belegt</td>
</tr>
</tbody>
</table>

1.3.1.6 Karten-Status LEDs (Operation/ERROR/Status last 24h)

Die Karte 7273(RC) verfügt über 3 Status-LEDs die den grundsätzlichen Funktionszustand der Karte anzeigen.
1.3.1.6.1 Standard-Funktion
Hier wird die Funktion der LEDs für den normalen Betriebszustand beschrieben.

<table>
<thead>
<tr>
<th>Operation-LED (Grün)</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>An</td>
<td>Normalfall, die Karte 7273(RC) ist in Betrieb.</td>
</tr>
<tr>
<td>1Hz Blinken</td>
<td>Karte 7273(RC) bootet ihr Betriebssystem (Dauer ca. 1-1,5 Minuten).</td>
</tr>
<tr>
<td>3Hz Blinken</td>
<td>Ein Firmware-Update (Image) der Karte 7273(RC) wird durchgeführt (Dauer ca. 2-3 Minuten).</td>
</tr>
<tr>
<td>Aus</td>
<td>Die Karte 7273(RC) ist nicht betriebsbereit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ERROR-LED (Rot)</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus</td>
<td>Normalfall, die Karte 7273(RC) ist in Betrieb.</td>
</tr>
<tr>
<td>1Hz Blinken</td>
<td>Interner System-Bus Fehler detektiert (Kommunikation mit Basis-System ist fehlerhaft).</td>
</tr>
<tr>
<td>5Hz Blinken</td>
<td>Ausfallsichere Basis-Parametrierung nicht vorhanden (Notbetrieb)</td>
</tr>
<tr>
<td>An</td>
<td>Die auf der Karte 7273(RC) befindliche primär CPU zeigt keine Aktivität</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status last 24h-LED (Grün)</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aus</td>
<td>Der NTP-Dienst der Karte 7273(RC) arbeitet weniger als 1 Stunde mit Stratum 1 oder / und Accuracy = high.</td>
</tr>
<tr>
<td>1Hz Blinken</td>
<td>Der NTP-Dienst der Karte 7273(RC) arbeitet größer gleich 1 Stunde ununterbrochen mit Stratum 1 und Accuracy = HIGH (optimaler Betriebszustand)</td>
</tr>
<tr>
<td>An</td>
<td>Der NTP-Dienst der Karte 7273(RC) arbeitet mehr als 24 Stunde ununterbrochen mit Stratum 1 und Accuracy = HIGH (optimaler Betriebszustand)</td>
</tr>
</tbody>
</table>

1.3.1.6.2 Funktion beim Betätigen des Reset-Tasters
Die Dauer der Betätigung des Reset-Tasters in der Frontblende der Karte kann anhand des Verhaltens aller 3 Status LEDs abgelesen werden.

<table>
<thead>
<tr>
<th>Alle 3 LED (Operation-LED, ERROR-LED und Status last 24h-LED)</th>
<th>Beschreibung Sonderfunktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Standardfunktion</td>
<td>Tasterdruck: 0-1 Sekunde</td>
</tr>
<tr>
<td>2Hz Blinken</td>
<td>Tasterdruck: 1-10 Sekunde</td>
</tr>
<tr>
<td>5Hz Blinken</td>
<td>Tasterdruck: &gt;10 Sekunde</td>
</tr>
</tbody>
</table>
1.3.1.6.3 Sonderfunktion für Update und Hardwareprobleme

Falls der OnBoard µController nicht in Funktion ist (Update/Defekt) kann dies am Verhalten der 3 Status-LEDs erkannt werden.

<table>
<thead>
<tr>
<th>Alle 3 LED (Operation-LED, ERROR-LED und Status last 24h-LED)</th>
<th>Beschreibung Sonderfunktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5Hz Blinken</td>
<td>Es ist gerade ein Firmware-Update des µControllers aktiv bzw. der µController ist defekt</td>
</tr>
</tbody>
</table>

1.3.1.7 Optional: aktiver 12V DC PPM (Minutenimpuls)

Für die Ausgabe eines aktiven Minutenimpulses (PPM) ist die Karte 7273(RC) optional mit einer zusätzlichen 3-poligen steckbaren Schraubklemme lieferbar (FG7273/PPM). Eine Nachrüstung dieser Option ist kundenseitig nicht möglich.

**Version 7273(RC) für 3HE Systeme**

**Version 7273 DIN-Rail**

<table>
<thead>
<tr>
<th>Pin-Nr.</th>
<th>Belegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minutenimpuls definierter Dauer (isoliert, Bezugspotential GND1)</td>
</tr>
<tr>
<td>2</td>
<td>+12V DC (isoliert, Bezugspotential GND1)</td>
</tr>
<tr>
<td>3</td>
<td>GND1 (isoliert für Minutenimpuls / +12V DC)</td>
</tr>
</tbody>
</table>
1.3.2 Frontblenden der Karten 7273 und 7273RC für 3HE / 19" Baugruppenträger

Für die Ausgabe eines Minutenimpulses (PPM) ist die Karte 7273(RC) optional mit einer 3-poligen steckbaren Schraubklemme bestückt (FG7273/PPM).

Parametrierung siehe Kapitel 6.3.5.9 Option FG7273/PPM: Minutenimpulslänge (Minute pulse (PPM))
1.3.3 Frontblende der Karte 7273 für 1HE / 19" Baugruppenträger (Slim Line)

Karte 7273/1U
1HE (Slim Line)

Karte 7273/1U
1HE (Slim Line)
mit Option FG7273/PPM

Für die Ausgabe eines Minutenimpulses (PPM) ist die Karte 7273/1U optional mit einer 3-poligen steckbaren Schraubklemme bestückt. (FG7273/PPM).

Parametrierung siehe Kapitel 6.3.5.9 Option FG7273/PPM: Minutenimpulslänge (Minute pulse (PPM))
1.3.4 Frontblende der Karte 7273 für DIN-Rail (Hutschienengehäuse)

<table>
<thead>
<tr>
<th>Karte 7273DIN-Rail</th>
<th>Karte 7273DIN-Rail mit Option FG7273/PPM</th>
</tr>
</thead>
</table>


Für die Ausgabe eines Minutenimpulses (PPM) ist die Karte 7273DIN-Rail optional mit einer 3-poligen steckbaren Schraubklemme bestückt. (FG7273/PPM).

Parametrierung siehe Kapitel 6.3.5.9 Option FG7273/PPM: Minutenimpulsänge (Minute pulse (PPM))
2 Systemverhalten der Karte 7273(RC)

In diesem Kapitel wird das Verhalten der Karte in speziellen Betriebsphasen beschrieben.

2.1 Boot-Phase

Die Boot-Phase der Karte startet nach dem Einschalten des Uhrensystems in dem die Karte verbaut ist bzw. nach einem Reset der Karte.

Während der Boot-Phase lädt die Karte ihr Betriebssystem und steht somit über LAN nicht zur Verfügung.

Die Boot-Phase dauert ca. 1-1,5 Minuten.

2.2 NTP Regel-Phase (Stratum/Accuracy)

Bei NTP handelt es sich um einen Regelprozess. Nach dem starten des NTP-Dienst (dies geschieht automatisch in der Boot-Phase) benötigt die Karte eine gewisse Zeit (in der Regel 5-10 Minuten) bis NTP sich auf die hohe Genauigkeit des Basis-Systems eingeregelt hat und den optimalen Betriebszustand mit \textbf{STRATUM = 1} und \textbf{ACCURACY = HIGH} erreicht hat.

Hierbei sind Faktoren wie die Genauigkeit der Synchronisationsquelle und der jeweilige Synchronisationszustand des Uhrensystems ausschlaggebend.

2.3 Reset- (Default) Taster


<table>
<thead>
<tr>
<th>Reset-Taster</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasterdruck: 0-1 Sekunde</td>
<td>Keine</td>
</tr>
<tr>
<td>Tasterdruck: 1-10 Sekunde</td>
<td>Karten-Reset wird nach dem Loslassen ausgelöst</td>
</tr>
<tr>
<td>Tasterdruck: &gt;10 Sekunde</td>
<td>Die Karte wird nach dem Loslassen auf Factory-Default-Werte zurückgesetzt</td>
</tr>
</tbody>
</table>

LED Verhalten siehe Kapitel 1.3.1.6.2 Funktion beim Betätigen des Reset-Tasters
2.3.1 **Karten-Reset**

Durch kurzes Drücken des Factory-Default-Tasters (zwischen 1 und 10 Sekunden) wird auf der Karte 7273(RC) ein Reset ausgelöst.

Für die Dauer der Betätigung des Reset-Tasters zwischen 1 - 10 Sekunden blinken die 3 Karten-Status LEDs (Operation/ERROR/Status last 24h) gemeinsam in einem 2Hz Rhythmus.

**Karten-Reset auslösen:**

1. Reset-Taster drücken bis die 3 Karten Status-LEDs im 2Hz Rhythmus blinken.
3. Die Operation LED blinkt mit 1Hz Das Betriebssystem der Karte 7273(RC) wird geladen (die Karte ist noch nicht betriebsbereit).
4. Der normale Betriebszustand ist nach ca. 1-1,5 Minuten wieder erreicht. Dies wird durch folgendes Verhalten der 3 Status-LEDs angezeigt:

   - Operation LED leuchtet
   - NTP-LED leuchtet
   - Send-LED flackert (nicht bei DIN-Rail)

Nach einem Reset ist die Karte 7273(RC) erst nach der Boot-Phase wieder über LAN erreichbar.

2.3.2 **Karte in Factory-Default-Zustand versetzen (incl. LAN-Parameter)**

Sollte Karte 7273(RC) nach fehlerhaftem Konfigurieren (z.B. über Ethernet) nicht mehr im Netzwerk erreichbar sein, kann die Karte 7273(RC) durch Drücken des Reset-Tasters für mehr als 10 Sekunden wieder in den Factory-Default-Zustand zurück versetzt werden.

Bei Betätigung des Reset-Tasters länger als 10 Sekunden blinken die 3 Karten-Status LEDs (Operation/ERROR/Status last 24h) gemeinsam in einem 5Hz Rhythmus.

Liste der Factory-Default Parameter siehe **Kapitel 9 Werkseinstellungen / Factory-Defaults Karte 7273(RC)**

Wenn der Reset-Taster länger als 10 Sekunden gedrückt wird, werden die in der Karte gespeicherten LAN-Parameter gelöscht und die Karte in den DHCP Mode versetzt:

- IP 000.000.000.000
- Gateway 000.000.000.000
- Netzmaske 000.000.000.000


Die LAN Parameter von Karte 7273(RC) müssen deshalb nach dem Default nochmals vollständig über das Basis-System gesetzt werden.
Die Karte 7273(RC) in den Default-Zustand versetzen

1. Reset-Taster für mehr als 10 Sekunden drücken bis die 3 Karten Status-LEDs im 5Hz Rhythmus blinken.
3. Die Karte 7273(RC) löst automatisch einen Karten-Reset aus.
4. Gewünschte LAN Parameter (IP-Adresse, Gateway und Netzmaske) für ETH0 über das Basis-System oder hmc Network Configuration Assistant neu setzen.
5. Alle Konfigurationen im WebGUI überprüfen und gegebenenfalls neu setzen.

2.4 Firmware-Update

Bei der Karte 7273(RC) handelt es sich um ein Multi-Prozessor-System. Ein Karten Firmware-Update besteht aus diesem Grund immer aus einem so genannten Software SET. Dieses beinhaltet zwei (2) durch die SET-Version definierte Programmstände für das Image und H8 Programm, die beide in die Karte eingespielt werden müssen.

ACHTUNG
Für die Auswahl des korrekten Image-Updates muss zwingend Kapitel 6.3.5.6.1 Auswahl Image-Update beachtet werden!

Ein Update ist ein kritischer Prozess. Während des Update darf das Gerät nicht ausschalten werden und die Netzwerkverbindung zum Gerät darf nicht unterbrochen werden.

Es müssen immer alle Programme eines SET eingespielt werden. Nur so kann ein definierter Betriebszustand sichergestellt werden.

Welche Programmstände einer SET-Version zugeordnet sind, kann im Zweifel den Release-Notes der Software SETs der Karte 7273(RC) entnommen werden.
Der grundsätzliche Ablauf eines kompletten Software-Update der Karte 7273(RC) wird im Folgenden beschrieben:

1. Im WebGUI der Karte als Master einloggen.
2. Im Register Device den Menüpunkt H8 Firmware Update auswählen.
3. Über das Auswahlfenster die Datei mit der Endung .mot auswählen.
4. Die ausgewählte Datei wird im Auswahlfenster angezeigt.
5. Mit dem Button Upload now wird der Update-Prozess gestartet.
6. Im WebGUI wird das erfolgreiche Übertragen der Datei an die Karte angezeigt.
7. Das Update der Karte startet jetzt nach einigen Sekunden automatisch.
8. Das Update kann an der Karte anhand der 3 Karten-Status LEDs erkannt werden (die LEDs blinken gemeinsam in einem 0,5Hz Rhythmus).
11. Erneut im WebGUI der Karte als Master einloggen.
12. Im Register Device den Menüpunkt Image Update auswählen.
13. Über das Auswahlfenster die Datei mit der Endung .img auswählen.
15. Mit dem Button Upload now wird der Update-Prozess gestartet.
16. Im WebGUI wird das erfolgreiche Übertragen und Schreiben der Datei in die Karte angezeigt.
17. Während des Update-Prozess blinkt auf der Karte die Status LED Operation im 3Hz Rhythmus.
18. Im WebGUI wird nach ca. 2-3min. der erfolgreiche Abschluss des Updates mit der Aufforderung zu einem Reboot der Karte angezeigt.

2.5 Karten-ERROR

Sollte sich die Karte 7273(RC) nicht wie spezifiziert verhalten, sind die Karten Status-LEDs auf einen Fehler zu prüfen (siehe Kapitel 1.3.1.6 Karten-Status LEDs (Operation/ERROR/Status last 24h))
3 Implementieren der Karte 7273(RC) in ein modulares hopf 19" Basis-System

Handhabung

Es ist auf einen ESD konformen Umgang bzw. Handhabung der Karte zu achten!
Ansonsten besteht die Gefahr, dass durch ESD (electrostatic discharge) Schäden an der Karte entstehen.
Durch unsachgemäße Handhabung der Karten entstandene Schäden an der Karte sind nicht durch die Werksgarantie gedeckt.

Elektrische Eigenschaften

Die Funktionskarte 7273 unterstützt kein Hot Plug.
Für einen Kartetausch muss das System vorher ausgeschaltet werden.
Das System oder die Funktionskarte könnte ansonsten Schaden nehmen.

Systemanforderung

Bei den Karten 7273 und 7273RC handelt es sich um Funktionskarten für System-Bus, daher müssen die jeweiligen Systeme, in denen die Karten implementiert werden sollen, über entsprechende Steckplätze verfügen.

Nicht modulare Systeme

Bei Hutschienen-Systemen (DIN-Rail) handelt es sich um nicht modulare Systeme. Hier können keine Karten vom Anwender erweitert oder ausgetauscht werden.

Kartennummer

Jeder LAN-Karte wird über einen DIP-Schalter eine eindeutige Kartenummer zugewiesen um sie in einem hopf Basis-System eindeutig identifizieren zu können.

Konfiguration

Die Basis LAN-Parameter (IP-Adresse etc.) um die Karte 7273(RC) im Netzwerk erreichen zu können werden über das Basis-System oder den in der hmc integrierten Network Configuration Assistant gesetzt.

Spannungsversorgung

Die Funktionskarten 7273 und 7273RC werden (außer bei DIN-Rail) über den internen System-Bus mit der Betriebsspannung versorgt.
3.1 **Handhabung der Karte / ESD Schutz**

> Es ist auf einen ESD konformen Umgang bzw. Handhabung der Karte zu achten!

Ansonsten besteht die Gefahr, dass durch ESD (electrostatic discharge) Schäden an der Karte entstehen. Durch unsachgemäße Handhabung der Karten entstandene Schäden an der Karte sind nicht durch die Werksgarantie gedeckt.

3.2 **Allgemein - Einstellung der Kartennummer für den Einsatz im Basis-System**

Damit die verschiedenen LAN Karten im Basis-System verwaltet und konfiguriert werden können, müssen die Karten auf eine System-Kartennummer kodiert werden.

> Es dürfen unter **keinen Umständen** zwei LAN Karten mit derselben Kartennummer in ein Basis-System eingebunden werden. Dies führt zu undefiniertem Fehlverhalten dieser beiden Karten!

Die Kodierung der Kartennummer erfolgt auf der Karte 7273(RC) über DIP-Schalterbank (DS1).
3.3  **hopf Basis-System 6844, 6844RC und 6855 – nur Karte 7273**

Mit dem Schalter 8 von DIP-Schalterbank DS1 kann zwischen dem Betrieb der Karte im Basis-System 7001 und den Basis-Systemen 6844, 6844RC und 6855 gewählt werden.

Nur bei korrekter Einstellung von Schalter 8 auf DIP Schalterbank DS1 ist ein ordnungsgemäßer Betrieb der Karte 7273 im jeweiligen Basis System möglich.

<table>
<thead>
<tr>
<th>DS1 / SW8</th>
<th>Auswahl des hopf Basis-Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>Basis-System 7001</td>
</tr>
<tr>
<td>on</td>
<td>Basis-System 68xx</td>
</tr>
</tbody>
</table>

### 3.3.1 Einstellung der Kartenummer für Basis-System 68xx

Im System 68xx können max. 2 LAN Karten (auch verschiedener Typen - z.B. Karte 7271 und Karte 7273) konfiguriert werden. Für die eindeutige Identifizierung im Basis-System wird die Kartenummer über DIP-Schalterbank (DS1 / SW1-5) eingestellt.

Im Menü des Basis-Systems wird im Menüpunkt LAN 1 die LAN Karte mit Kartenummer 1 und unter Menüpunkt LAN 2 die LAN Karte mit Kartenummer 2 parametrierbar.

<table>
<thead>
<tr>
<th>SW5</th>
<th>SW4</th>
<th>SW3</th>
<th>SW2</th>
<th>SW1</th>
<th>Karten-Nr.:</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>Board Nr. 1</td>
<td>Board No. 0</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>Board Nr. 2</td>
<td>Board No. 1</td>
</tr>
</tbody>
</table>

Im System 68xx sind nur die Kartenummern 1 und 2 zulässig. Karten mit abweichender Kartenummer können nicht im LAN Menü vom System 68xx konfiguriert werden.

**ACHTUNG: Abweichende Darstellung der Kartenummer im WebGUI**

Die im WebGUI angezeigten Kartenummern (Board Nr. X) beginnen mit 0 anstatt mit 1. Das heißt z.B. LAN Karte 1 wird im WebGUI mit Karten-Nr. 0 bezeichnet.
3.4 **hopf Basis-System 7001 – nur Karte 7273**

Mit dem Schalter 8 von DIP-Schalterbank **DS1** erfolgt die Parametrierung für den Betrieb der Karte im Basis-System 7001 oder in Basis-Systemen 6844, 6844RC und 6855.

<table>
<thead>
<tr>
<th>DS1 / SW8</th>
<th>Auswahl des hopf Basis-Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>Basis-System 7001</td>
</tr>
<tr>
<td>on</td>
<td>Basis-System 68xx</td>
</tr>
</tbody>
</table>

**Nur bei korrekter Einstellung ist ein ordnungsgemäßer Betrieb der Karte 7273 möglich.**

3.4.1 **Einstellung der Kartenummer für Basis-System 7001**

Im System 7001 können max. 8 LAN Karten (auch verschiedener Typen - z.B. Karte 7271 und Karte 7273) konfiguriert werden. Für die eindeutige Identifizierung im Basis-System wird die Kartenummer über DIP-Schalterbank (**DS1 / SW1-5**) eingestellt.

Im Menü des Basis-Systems sind die LAN Karten unter LAN 1-8 entsprechend ihrer Kartenummer parametrierbar (z.B. LAN Karte mit Kartenummer 1 wird im LAN 1 Menü parametriert).

<table>
<thead>
<tr>
<th>SW5</th>
<th>SW4</th>
<th>SW3</th>
<th>SW2</th>
<th>SW1</th>
<th>Systemkarten-Nr.:</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>Board Nr. 1</td>
<td>Board No. 0</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>Board Nr. 2</td>
<td>Board No. 1</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>off</td>
<td>Board Nr. 3</td>
<td>Board No. 2</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>Board Nr. 4</td>
<td>Board No. 3</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>Board Nr. 5</td>
<td>Board No. 4</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>off</td>
<td>Board Nr. 6</td>
<td>Board No. 5</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>Board Nr. 7</td>
<td>Board No. 6</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>Board Nr. 8</td>
<td>Board No. 7</td>
</tr>
</tbody>
</table>

**Im System 7001 sind nur die Kartenummern 1 bis 8 zulässig.**
Karten mit abweichender Kartenummer können nicht im LAN Menü vom System 7001 konfiguriert werden.

**ACHTUNG: Abweichende Darstellung der Kartenummer im WebGUI**
Die im WebGUI angezeigten Kartenummern (Board Nr. X) beginnen mit 0 an zu zählen. Das heißt z.B. LAN Karte 1 wird im WebGUI mit Karte Nr. 0 bezeichnet und LAN Karte 8 mit Karte Nr. 7.
3.5 *hopf* Basis-System 7001RC – nur Karte 7273RC

3.5.1 Einstellung der Kartennummer für Basis-System 7001RC

In einem System 7001RC können max. 31 der LAN Karten (auch verschiedener Typen - z.B. Karte 7271RC und Karte 7273RC) konfiguriert werden. Für die eindeutige Identifizierung im Basis-System wird die Kartennummer über DIP-Schalterbank (DS1 / SW1-5) eingestellt.

<table>
<thead>
<tr>
<th>SW5</th>
<th>SW4</th>
<th>SW3</th>
<th>SW2</th>
<th>SW1</th>
<th>Systemkarten-Nr.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>-</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>Board Nr. 01</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>off</td>
<td>Board Nr. 02</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>Board Nr. 03</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>Board Nr. 04</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>Board Nr. 05</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>Board Nr. 06</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>Board Nr. 07</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>Board Nr. 08</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>Board Nr. 09</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>off</td>
<td>Board Nr. 10</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>on</td>
<td>Board Nr. 11</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>Board Nr. 12</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>Board Nr. 13</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>Board Nr. 14</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>Board Nr. 15</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>Board Nr. 16</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>Board Nr. 17</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>Board Nr. 18</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>Board Nr. 19</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>Board Nr. 20</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>Board Nr. 21</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>Board Nr. 22</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>Board Nr. 23</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>Board Nr. 24</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>Board Nr. 25</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>off</td>
<td>Board Nr. 26</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>on</td>
<td>Board Nr. 27</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>Board Nr. 28</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>Board Nr. 29</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>Board Nr. 30</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>Board Nr. 31</td>
</tr>
</tbody>
</table>

![Warning Icon]

3.5.2 NTP Accuracy Meldung für Status- und Fehlermeldungen im System 7001RC

Die Auswertung der NTP Accuracy Meldung ist ab Softwareversion 07.00 der Steuerkarte 7020RC des Basis-Systems 7001RC verfügbar.

Mit DIP-Schalter DS1 / SW7 kann dem Basissystem 7001RC von jeder Karte 7273RC die Auswertung der NTP Accuracy Meldung für die Generierung von Status- und Fehlermeldungen erlaubt bzw. unterdrückt werden.

<table>
<thead>
<tr>
<th>DS1 / SW7</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Auswertung vom NTP-Status im System 7001RC erlauben</td>
</tr>
<tr>
<td>OFF</td>
<td>Auswertung vom NTP-Status im System 7001RC nicht erlauben</td>
</tr>
</tbody>
</table>


3.6 Herstellen der Netzwerkverbindung

Bevor die LAN-Karte mit dem Netzwerk verbunden wird ist sicher zu stellen, dass die Netzwerkparameter der LAN-Karte entsprechend dem lokalen Netzwerk konfiguriert sind.

Wird die Netzwerkverbindung zu einer falsch konfigurierten LAN-Karte (z.B. doppelte vergebene IP-Adresse) hergestellt, kann es zu Störungen im Netzwerk kommen.

Die Karte 7273(RC) wird mit der Einstellung DHCP-Modus ausgeliefert (dies entspricht der Factory-Default Einstellung).

Sind die erforderlichen Netzwerkparameter nicht bekannt, müssen diese vom Netzwerkadministrator erfragt werden.

4 Netzwerk-Konfiguration für ETH0 via LAN Verbindung über die 

Nach dem Anschließen des System an die Spannungsversorgung und Herstellen der physi-

By the receipt of the system to the power supply and setting up the physical network connection with the LAN-Schnittstelle der Karte 7273(RC), kann die Karte mit der 

hopf Management Console (hmc) im Netzwerk gesucht und anschließend die Basis 

LAN-Parameter (IP-Adresse, Netzmaske und Gateway) gesetzt werden um die Karte für an-

dere Systeme im Netzwerk erreichbar zu machen.

Damit die SUCH-Funktion des 
hmc - Network Configuration Assistant 
die gewünschte(n) LAN-Karte(n) findet und erkennt, müssen sich der 
hmc-Rechner und die LAN-Karte(n) in demselben SUB-Netz befinden.

Die Basis LAN-Parameter können mit dem, in der 
hmc integrierten, Network Configuration 
Assistant eingestellt werden.

Nach dem der 
hmc Network-Configuration-Assistant 
gestartet wurde und die Suche nach 
hopf LAN-Modulen vollständig abgeschlossen ist, kann die Konfiguration der Basis LAN Pa-

tarameter erfolgen.

Die LAN-Karten erscheinen je nach Typ in der Device List als:

- 727300 - Karte 7273 1HE und 3HE
- 727300DIN - Karte 7273DIN-Rail
- 7273RC00 - Karte 7273RC
Bei mehreren hopf LAN-Karten vom gleichen Typ können diese anhand der Hardware Adresse (MAC-Adresse) unterschieden werden.

Zur erweiterten Konfiguration der LAN-Karte 7273(RC) über einen Browser via WebGUI sind folgende Basis LAN-Parameter erforderlich:

- **Host Name** ⇒ z.B. hopf7273
- **Network Configuration Type** ⇒ Static IP Address
- **IP Address** ⇒ z.B. 192.168.232.1
- **Netmask** ⇒ z.B. 255.255.224.0
- **Gateway** ⇒ z.B. 192.168.224.1

Die Bezeichnung für den Host Namen muss folgenden Bedingungen entsprechen:
- Der Hostnamen darf nur die Zeichen 'A'-'Z', '0'-'9', '.' und '-' enthalten. Bei den Buchstaben wird nicht zwischen Gross- und Kleinschreibung unterschieden.
- Das Zeichen '.' darf nur als Trenner zwischen Labels in Domainnamen vorkommen.
- Das Zeichen '-' darf nicht als erstes oder letztes Zeichen eines Labels vorkommen.

Die zuzuweisenden Netzwerkparameter sollten vorher mit dem Netzwerkadministrator abgestimmt werden um Probleme im Netzwerk (z.B. doppelte IP Adresse) zu vermeiden.
Nach der Eingabe der oben genannten LAN-Parameter müssen diese an die LAN-Karte 7273(RC) mit dem Button Apply übertragen werden. Darauf erfolgt eine Aufforderung zur Eingabe des Device Passwords:


Die so gesetzten LAN-Parameter werden direkt (ohne Reboot) von der LAN-Karte übernommen und sind sofort aktiv.
5 Netzwerk-Konfiguration für ETH0 über das Basis-System

Über das Basis-System wird die Karte 7273/RC nur soweit konfiguriert, dass sie im Netzwerk über ETH0 erreichbar ist. Alle weiteren Konfigurationen der Karte werden mittels WebGUI vorgenommen.


Als Grundlage für die Konfiguration gilt die Technische Beschreibung des jeweiligen Basis-Systems. Nachfolgend wird nur auf die kartenspezifischen Menüs des jeweiligen Basis-Systems eingegangen.


IP-Adresse (IPv4)

Eine IP-Adresse ist ein 32 Bit Wert, aufgeteilt in vier 8-Bit-Zahlen. Die Standarddarstellung ist 4 Dezimalzahlen (im Bereich 0...255) voneinander durch Punkte getrennt (Dotted Quad Notation).

**Beispiel: 192.002.001.123**


In dem folgenden Text steht das "x" für den Host-Teil der IP-Adresse.

**Klasse A Netzwerke**

IP-Adresse 001.xxx.xxx.xxx bis 127.xxx.xxx.xxx

In dieser Klasse existieren max. 127 unterschiedliche Netzwerke. Dies ermöglicht eine sehr hohe Anzahl von möglichen anzuschließenden Geräten (max. 16.777.216)

**Beispiel: 100.000.000.001, (Netzwerk 100, Host 000.000.001)**

**Klasse B Netzwerke**

IP-Adresse 128.000.xxx.xxx bis 191.255.xxx.xxx

Jedes dieser Netzwerke kann aus bis zu 65534 Geräten bestehen.

**Beispiel: 172.001.003.002 (Netzwerk 172.001, Host 003.002)**

**Klasse C Netzwerke**

IP-Adresse 192.000.000.xxx bis 223.255.255.xxx

Diese Netzwerkadressen sind die meist gebräuchlichsten. Es können bis zu 254 Geräte angeschlossen werden.
**Klasse D Netzwerke**


**Klasse E Netzwerke**


**Gateway-Adresse**


**Netzmaske**

Die Netzmaske wird benutzt, um IP-Adressen außerhalb der Netzwerkklasse A, B, C aufzuteilen. Durch das Eingeben der Netzmaske ist es möglich anzugeben, wie viele Bits der IP-Adresse als Netzwerkteil und wie viele als Host-Teil verwendet werden, z.B.:

<table>
<thead>
<tr>
<th>Netzwerk-klasse</th>
<th>Netzwerk-Anteil</th>
<th>Host-Teil</th>
<th>Netzmaske binär</th>
<th>Netzmaske dezimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8 Bit</td>
<td>24 Bit</td>
<td>11111111.00000000.00000000.00000000</td>
<td>255.0.0.0</td>
</tr>
<tr>
<td>B</td>
<td>16 Bit</td>
<td>16 Bit</td>
<td>11111111.11111111.00000000.00000000</td>
<td>255.255.0.0</td>
</tr>
<tr>
<td>C</td>
<td>24 Bit</td>
<td>8 Bit</td>
<td>11111111.11111111.11111111.00000000</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>

Für die Berechnung der Netzmaske wird die Anzahl der Bits für den Hostteil eingegeben:

<table>
<thead>
<tr>
<th>Netzmaske</th>
<th>Host Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>255.255.255.252</td>
<td>2</td>
</tr>
<tr>
<td>255.255.255.248</td>
<td>3</td>
</tr>
<tr>
<td>255.255.255.240</td>
<td>4</td>
</tr>
<tr>
<td>255.255.255.224</td>
<td>5</td>
</tr>
<tr>
<td>255.255.255.192</td>
<td>6</td>
</tr>
<tr>
<td>255.255.255.128</td>
<td>7</td>
</tr>
<tr>
<td>255.255.255.000</td>
<td>8</td>
</tr>
<tr>
<td>255.255.254.000</td>
<td>9</td>
</tr>
<tr>
<td>255.255.252.000</td>
<td>10</td>
</tr>
<tr>
<td>255.255.248.000</td>
<td>11</td>
</tr>
<tr>
<td>255.128.000.000</td>
<td>23</td>
</tr>
<tr>
<td>255.000.000.000</td>
<td>24</td>
</tr>
</tbody>
</table>

**Beispiel:**

Gewünschte Netzmaske: 255.255.255.128

Einzugebender Wert: 7
5.1 **Eingabefunktionen Basis-Systeme 6844, 6844RC und 6855 (nur Karte 7273)**


5.1.1 **Eingabe statische IPv4-Adresse / DHCP-Modus**

Die Eingabe der IP-Adresse bzw. des DHCP-Modus für die LAN-Schnittstelle ETH0 erfolgt über folgende Auswahlbilder:

```
SET LAN 1
ADR. Y/N
```

oder

```
SET LAN 2
ADR. Y/N
```

Nach Eingabe von [Y] springt die Anzeige in das Eingabebild (hier LAN 1).

```
LAN 1 >
```

**Statische IPv4-Adresse**


Eine vollständige Eingabe sieht z.B. wie folgt aus:

```
LAN 1 > 192.168.017.001<
```

Bei einer nicht plausiblen Eingabe (wie 265) wird ein INPUT ERROR ausgegeben und die vollständige Eingabe verworfen.

**DHCP / Statische IP-Adressenvergabe**

Für die Verwendung von DHCP ist die IP-Adresse >000.000.000.000< (keine gültige IP-Adresse) zu setzen.

Alle anderen Einstellungen werden als statische IP-Adresse interpretiert.
5.1.2 **Eingabe Gateway-Adresse**

Die Eingabe der Gateway-Adresse erfolgt durch die Auswahlbilder

```
SET LAN 1
GATEWAY ADR. Y/N
```

oder

```
SET LAN 2
GATEWAY ADR. Y/N
```

Nach Eingabe von (Ja) springt die Anzeige in das Eingabebild:

```
G. W 1 >
```

Es kann nun die Gateway-Adresse in gleicher Form wie die IP-Adresse eingegeben werden.

5.1.3 **Eingabe Netzmaske**

Die Eingabe der Netzmaske unterscheidet sich zwischen den Systemen 6844 / 6844RC und dem System 6855.

5.1.3.1 **Eingabe Netzmaske - Systeme 6844 und 6844RC**

Bei diesen Systemen wird die Netzmaske DEZIMAL eingegeben.

**Setzen Netzmaske**

```
SET LAN 1
NETMASK Y/N
```

```
LAN_1 NETMASK
> 255.255.255.0
```

5.1.3.2 **Eingabe Netzmaske - System 6855**

Bei diesem System erfolgt die Eingabe der Netzmaske über Anzahl der HOST Bits.

Die Eingabe der Netzmaske für die LAN-Schnittstelle ETH0 erfolgt durch die Auswahlbilder:

```
SET LAN 1
NET-MASK. Y/N
```

oder

```
SET LAN 2
NET-MASK. Y/N
```

Nach Eingabe von (Ja) springt die Anzeige in das Eingabebild:

```
NET-MASK LAN 1
> 
```

Es kann nun die Netzmaske im Bereich zwischen 0-31 eingegeben werden.
5.1.4 Eingabe Control-Byte

Mit dem Control-Byte können verschiedene Einstellungen vorgenommen werden. Die Eingabe des Control-Bytes erfolgt über folgende Auswahlbilder:

oder

Nach Eingabe von [Y] springt die Anzeige in das Eingabebild. Für eine Manipulation sind in der zweiten Zeile mit "0" und "1" die einzelnen Bits des neuen Bytes einzugeben.

Die Bits des Parameterbytes sind absteigend durchnummeriert:

z.B.:

Die Eingabe muss mit [ENT] abgeschlossen werden.

5.1.4.1 Bit 7-0 - Zurzeit ohne Funktion

<table>
<thead>
<tr>
<th>Bit 7-0</th>
<th>Zurzeit ohne Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Aus Kompatibilitätsgründen sollten diese Bits immer auf &quot;0&quot; gesetzt werden.</td>
</tr>
</tbody>
</table>
5.2 Eingabefunktionen Basis-System 7001 (nur Karte 7273)

Es erscheint das LAN-Kartenmenü für die LAN-Schnittstelle ETH0:

<table>
<thead>
<tr>
<th>No: 1</th>
<th>CB: 00000000</th>
<th>IP: 00000000</th>
</tr>
</thead>
</table>

Als erste Eingabe wird bei No: die System-Kartennummer (1-8) der zu konfigurierenden LAN Karte erwartet (hier Kartennummer 1) und mit Taste ENT bestätigt.

Nach der Eingabe der Kartennummer wird in der ersten Menüzeile die aktuelle Konfiguration der ausgewählten LAN-Karte für die LAN-Schnittstelle ETH0 angezeigt.

In der zweiten Zeile können die neuen Parameter eingegeben werden. Ohne einer neuen Eingabe kann mit Taste ENT zum nächsten Menüpunkt gewechselt werden.


5.2.1 Eingabe Control-Byte
Mit dem Control-Byte (CB:) können verschiedene Einstellungen vorgenommen werden.

<table>
<thead>
<tr>
<th>No: 1</th>
<th>CB: 00000000</th>
<th>IP: 00000000</th>
</tr>
</thead>
</table>

Durch Eingabe 0 und 1 werden die einzelnen Bits des Control-Byte konfiguriert.

Mit Taste ENT wird die vollständige Eingabe abgeschlossen. Das neue Control-Byte erscheint in der oberen Zeile.

5.2.1.1 Bit 7-0 - Zurzeit ohne Funktion

<table>
<thead>
<tr>
<th>Bit 7-0</th>
<th>Zurzeit ohne Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Aus Kompatibilitätsgründen sollten diese Bits immer auf &quot;0&quot; gesetzt werden.</td>
</tr>
</tbody>
</table>
5.2.2 Eingabe statische IPv4-Adresse / DHCP-Modus

In der oberen Zeile erscheint die zurzeit eingestellte IP-Adresse für die LAN-Schnittstelle ETH0.

<table>
<thead>
<tr>
<th>No:</th>
<th>CB:</th>
<th>IP:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&gt;00000000</td>
<td>&gt;017.001</td>
</tr>
</tbody>
</table>


**DHCP / Statische IP-Adressenvergabe**

Für die Verwendung von DHCP ist die IP-Adresse vollständig auf >000.000.000.000< (keine gültige IP-Adresse) zu setzen.

Alle anderen Einstellungen werden als statische IP-Adresse interpretiert.
5.2.3 Eingabe Netzmaske

In der oberen Zeile erscheint die zurzeit eingestellte Netzmaske für die LAN-Schnittstelle ETH0 als Host-Bits.

\[
\begin{array}{cccccccc}
\text{N o:} & 1 & \text{NM:} & 00 & \text{GW:} & 192.168.017.152 \\
\text{NEW} & > & \text{> } & \text{> } & \text{> } & \text{> }
\end{array}
\]

Der Eingabebereich für die Netzmaske liegt zwischen 0-31.

5.2.4 Eingabe Gateway-Adresse

Als nächster Menüpunkt erscheint die Bearbeitung der Gateway- oder Router-Adresse.

\[
\begin{array}{cccccccc}
\text{N o:} & 1 & \text{NM:} & 16 & \text{GW:} & 192.168.017.152 \\
\text{NEW} & > & 16 & \text{> } & \text{> } & \text{> }
\end{array}
\]

Es kann nun die Gateway-Adresse in gleicher Form wie die IP-Adresse in Kapitel 5.2.2 Eingabe statische IPv4-Adresse / DHCP-Modus eingegeben werden.

5.3 Eingabefunktionen Basis-System 7001RC (nur Karte 7273RC)


Mit Taste [ENT] ⇒ Hauptmenü
Mit Taste [4] ⇒ Board-Setup
Mit Taste [N] ⇒ blättern bis Menüpunkt:

\[
\begin{array}{cccccccc}
\text{SET SYSTEM-BOARDS PARAMETER Y/N} \\
\end{array}
\]

Mit Taste [Y] selektieren.

NETZWERK-KONFIGURATION FÜR ETH0 ÜBER DAS BASIS-SYSTEM

Beispielbild:

**PARAMETER BOARD 03 OF 25 7273 NO.: 01**

**STATUS:** M/+ BOARDDNAME: "ETHERNET" SET>Y/N

PARAMETER BOARD 03 OF 25  Karte 03 von 25 implementierten
7273 NO.: 01  Kartentyp 7273RC mit Kartennummer 01
STATUS: M (I)/- (E)  M oder I = in oder ohne Überwachung (Idle)
                      E oder – = in Betrieb ohne Fehler oder Kartenfehler
BOARDNAME: "ETHERNET "  ETHERNET Vom Kunden frei gewählter und bis zu
                      8 Zeichen langer Kartenname

5.3.1 Eingabe statische IPv4-Adresse / DHCP-Modus

**Statische IPv4-Adresse**

In der oberen Zeile erscheint die selektierte Karte mit Kartennummer und IPv4-Adresse der
LAN-Schnittstelle ETH0. Zur Konfiguration einer neuen IPv4-Adresse ist die vollständige Ein-
gabe der 4 Zifferngruppen erforderlich.

Die Eingabe der IPv4-Adresse erfolgt in 4 Zifferngruppen einstellbar von 000 bis 255. Sie sind

Eine vollständige Eingabe sieht z.B. wie folgt aus:

```
B.7273 NO.: 01 IP-ADR >192.168.017.001<
```

Bei einer nicht plausiblen Eingabe (wie 265) wird ein INPUT ERROR ausgegeben und die
vollständige Eingabe verworfen.

**DHCP / Statische IP-Adressenvergabe**

Für die Verwendung von DHCP ist die IP-Adresse vollständig auf >000.000.000.000< (keine
gültige IP-Adresse) zu setzen.

Alle anderen Einstellungen werden als statische IP-Adresse interpretiert.

5.3.2 Eingabe Gateway-Adresse

Die Eingabe der Gateway-Adresse erfolgt durch die Auswahlbilder:

```
B.7273 NO.: 01 GW-ADR >255.000.000.000<
```

Es kann nun die Gateway-Adresse in gleicher Form wie die IP-Adresse eingegeben werden
(siehe Kapitel 5.3.1 Eingabe statische IPv4-Adresse / DHCP-Modus).
5.3.3 Eingabe Netzmaske

Die Eingabe der Netzmaske erfolgt durch die Auswahlbilder:

```
B.7273 NO.: 01 NETMASK >255.255.000.000<
|-----------------|-----------|
NEW NETMASK >~~~~.~~~.~~~.~~~<
```

Es kann nun die Netzmaske für die LAN-Schnittstelle ETH0 in gleicher Form wie die IP-Adresse eingegeben werden (siehe Kapitel 5.3.1 Eingabe statische IPv4-Adresse / DHCP-Modus).

5.3.4 Eingabe Control-Byte

In der oberen Zeile steht das Control-Byte mit den aktuell eingestellten Werten.

```
B.7273 NR.: 01 CONTROL-BYTE 0000010<
|-----------------|-----------|
NEW CONTROL-BYTE >~~~~.~~~.~~~.~~~<
```

Für eine Manipulation sind in der zweiten Zeile mit "0" und "1" die einzelnen Bits des neuen Bytes einzugeben. Es muss immer das komplette Control-Byte eingetragen und mit Taste ENT abgeschlossen werden.

Die Bits des Control-Bytes sind absteigend durchnummeriert:

```
CONTROL-BYTE >76543210<
```

5.3.4.1 Bit 7-0 - Zurzeit ohne Funktion

<table>
<thead>
<tr>
<th>Bit 7-0</th>
<th>Zurzeit ohne Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Aus Kompatibilitätsgründen sollten diese Bits immer auf &quot;0&quot; gesetzt werden.</td>
</tr>
</tbody>
</table>
5.3.5 **Eingabe Parameterbyte 01 (zurzeit ohne Funktion)**

In der oberen Zeile steht das Parameterbyte 01 mit den aktuell eingestellten Werten.

\[
\begin{array}{c|c}
\text{B.7273 NO.:} & \text{01} \\
\text{OLD: BYTE 01} > & \text{00000000} < \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{BYTE = BIT} & \text{7..0} \\
\text{NEW: BYTE 01} > & \text{~ ~ ~ ~ ~ ~ ~} < \\
\end{array}
\]

Für eine Manipulation sind in der zweiten Zeile mit "0" und "1" die einzelnen Bits des neuen Bytes einzugeben. Es muss immer das komplette Parameterbyte eingetragen und mit Taste \text{ENT} abgeschlossen werden.

Die Bits des Parameterbytes sind absteigend durchnummeriert:

\[
\begin{array}{c|c}
\text{BYTE 01} > & \text{76543210} < \\
\end{array}
\]

<table>
<thead>
<tr>
<th>Bit 7-0</th>
<th>Zurzeit ohne Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Aus Kompatibilitätsgründen sollten diese Bits immer auf &quot;0&quot; gesetzt werden.</td>
</tr>
</tbody>
</table>

5.3.6 **Eingabe Parameterbyte 02 (zurzeit ohne Funktion)**

In der oberen Zeile steht das Parameterbyte 02 mit den aktuell eingestellten Werten.

\[
\begin{array}{c|c}
\text{B.7273 NO.:} & \text{01} \\
\text{OLD: BYTE 02} > & \text{00000000} < \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{BYTE = BIT} & \text{7..0} \\
\text{NEW: BYTE 02} > & \text{~ ~ ~ ~ ~ ~ ~} < \\
\end{array}
\]

Für eine Manipulation sind in der zweiten Zeile mit "0" und "1" die einzelnen Bits des neuen Bytes einzugeben. Es muss immer das komplette Parameterbyte eingetragen und mit Taste \text{ENT} abgeschlossen werden.

Die Bits des Parameterbytes sind absteigend durchnummeriert:

\[
\begin{array}{c|c}
\text{BYTE 02} > & \text{76543210} < \\
\end{array}
\]

<table>
<thead>
<tr>
<th>Bit 7-0</th>
<th>Zurzeit ohne Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Aus Kompatibilitätsgründen sollten diese Bits immer auf &quot;0&quot; gesetzt werden.</td>
</tr>
</tbody>
</table>

5.4 **Konfiguration in Hutschienen-Systemen (DIN-Rail)**

Es ist der jeweiligen Beschreibung des Hutschienen-Systems zu entnehmen in wie weit eine Parametrierung über das System möglich ist, oder die LAN-Parametrierung der Karte aus- schließlich über den \text{hmc Network Configuration Assisant} erfolgenden kann (siehe \text{Kapitel 4 Netzwerk-Konfiguration für ETH0 via LAN Verbindung über die hmc}).

5.5 **Konfiguration über \text{hmc (hopf Management Console)} Remote-Zugriff**

Soweit ein Basis-System über eine Remote-Kommunikation verfügt können die Parameter auch über die \text{hmc} gesetzt werden.
6 HTTP/HTTPS WebGUI – Web Browser Konfigurationsoberfläche

Für die korrekte Anzeige und Funktion des WebGUI müssen JavaScript und Cookies beim Browser aktiviert sein.

Das WebGUI wurde mit folgenden Browsern getestet: MOZILLA 1.x, Netscape 7.x und IE 6.x – einige Funktionen laufen nicht mit älteren Versionen.

6.1 Schnellkonfiguration

In diesem Kapitel wird kurz die grundlegende Bedienung des auf der Karte installierten WebGUI beschrieben.

6.1.1 Anforderungen

- Betriebsbereites hopf Basis-System mit implementierter Karte 7273(RC)
- Karte für den Betrieb im Netzwerk konfiguriert (siehe Kapitel 4 Netzwerk-Konfiguration für ETH0 via LAN Verbindung über die hmc und Kapitel 5 Netzwerk-Konfiguration für ETH0 über das Basis-System)
- PC mit installierten Web Browser (z.B. Internet Explorer) im Sub-Netz der Karte 7273(RC)

6.1.2 Konfigurationsschritte

- Herstellen der Verbindung zur Karte mit einem Web Browser
- Login als 'master' Benutzer (Default-Passwort bei Auslieferung ist <master>)
- Wechseln zur Registerkarte "Network" und wenn vorhanden, DNS-Server eintragen (je nach Netzwerk notwendig für NTP und den Alarm-Meldungen)
- Speichern der Konfiguration
- Wechseln zur Registerkarte "Device" und anschließendes Neustarten des Network Time Server über "Reboot Device"
- NTP Service ist nun mit den Standardeinstellungen verfügbar
- NTP spezifische Einstellungen können unter der Registerkarte "NTP" erfolgen
- Alarm-Meldung via Syslog/SNMP/Email können unter der Registerkarte "Alarm" konfiguriert werden

Bei Unklarheiten zur Ausführung der Konfigurationsschritte sind alle notwendigen Informationen in folgender detaillierter Erklärung nachzulesen.
6.2 Allgemein – Einführung


Die komplette Konfiguration kann nur über das WebGUI der Karte abgeschlossen werden!

Das WebGUI wurde für den Mehrbenutzer-Lesezugriff entwickelt, nicht aber für den Mehrbenutzer-Schreibzugriff. Es liegt in der Verantwortung des Benutzers, darauf zu achten.
6.2.1 LOGIN und LOGOUT als Benutzer

Alle Werte der Karte können gelesen werden, ohne als spezieller Benutzer eingeloggt zu sein. Die Konfiguration oder Änderung der Kartenwerte kann hingegen nur von einem gültigen Benutzer durchgeführt werden! Es sind zwei Benutzer definiert:

- "master" Benutzer (Default Passwort bei Auslieferung: <master> )
- "device" Benutzer (Default Passwort bei Auslieferung: <device> )

**Beim eingegebenen Passwort ist auf Groß-/Kleinschreibung zu achten. Alphanumerische Zeichen sowie folgende Symbole können verwendet werden: [ ] ( ) * - _ ! $ % & / = ?**

Hat man sich als "master" Benutzer eingeloggt, sollte folgender Bildschirm sichtbar sein.

Um sich auszuloggen, klickt man auf den **Logout** Button.

Das WebGUI hat ein Sitzungsmanagement implementiert. Loggt sich ein Benutzer nicht aus, so wird dieser automatisch nach 10 Minuten Inaktivität (Leerlaufzeit) abgemeldet.
Nach erfolgreichem Login können abhängig vom Zugriffslevel (device oder master Benutzer) Änderungen an der Konfiguration vorgenommen und gespeichert werden.

Der als "master" eingeloggte Benutzer hat alle Zugriffsrechte auf die Karte 7273(RC).

Der als "device" eingeloggte Benutzer hat keinen Zugriff auf:

- Reboot auslösen
- Factory Defaults auslösen
- Image Update durchführen
- H8 Firmware Update durchführen
- Upload Certificate
- Master Passwort ändern
- Configuration Files downloaden

6.2.2 Navigation durch die Web-Oberfläche

Das WebGUI ist in funktionale Registerkarten aufgeteilt. Um durch die Optionen der Karte zu navigieren, klickt man auf eine der Registerkarten. Die ausgewählte Registerkarte ist durch eine dunklere Hintergrundfarbe erkennbar, siehe folgendes Bild (hier General).

Es ist keine Benutzeranmeldung erforderlich, um durch die Optionen der Kartenkonfiguration zu navigieren.

Um die korrekte Funktion der Web Oberfläche zu gewährleisten, sollte JavaScript im Browser aktiviert sein.

Innerhalb der Registerkarten führt jeder Link der Navigation auf der linken Seite zu zugehörigen detaillierten Einstellungsmöglichkeiten.
6.2.3 Eingeben oder Ändern eines Wertes

Es ist erforderlich, als einen der bereits beschriebenen Benutzer angemeldet zu sein, um Werte einzugeben oder verändern zu können.

Nach einer Eingabe wird das konfigurierte Feld mit einem Stern ‘*’ markiert, das bedeutet dass ein Wert verändert oder eingetragen wurde, dieser aber noch nicht im Flash gespeichert ist. Um die Konfiguration oder den veränderten Wert dauerhaft zu speichern, ist es notwendig, die Bedeutung der unten stehenden Symbole zu kennen.

Bedeutung der Symbole von links nach rechts:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Symbol</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Apply</td>
<td>Übernehmen von Änderungen und eingetragenen Werten</td>
</tr>
<tr>
<td>2</td>
<td>Reload</td>
<td>Wiederherstellen der gespeicherten Werte</td>
</tr>
<tr>
<td>3</td>
<td>Save</td>
<td>Ausfallsicheres Speichern der Werte in die Flash Konfiguration</td>
</tr>
</tbody>
</table>

Sollen die Werte nur getestet werden, reicht es aus, die Änderungen mit Apply zu übernehmen.

**Änderung von Netzwerk-Parametern**


Für das Übernehmen von Änderungen und Eintragen von Werten sind ausschließlich die dafür vorgesehenen Buttons im WebGUI zu verwenden.

### 6.2.4 Plausibilitätsprüfung bei der Eingabe

In der Regel wird eine Plausibilitätsprüfung bei der Eingabe durchgeführt.

Wie im oberen Bild ersichtlich, wird ein ungültiger Wert (z.B. Text wo eine Zahl eingegeben werden muss, IP-Adresse außerhalb eines Bereiches ...) durch einen roten Rand gekennzeichnet, wenn man versucht diese Einstellungen zu übernehmen. Zu beachten ist dabei, dass es sich nur um einen semantischen Check handelt, nicht ob eine eingegebene IP-Adresse im eigenen Netzwerk oder der Konfiguration verwendet werden kann! Solange ein Fehlerhinweis angezeigt wird, ist es nicht möglich, die Konfiguration im Kartenflash zu speichern.

Der Fehlercheck überprüft nur Semantik und Bereichsgültigkeit, es ist KEIN Logik- oder Netzwerkcheck für eingetragene Werte.
6.3 Beschreibung der Registerkarten

Der WebGUI ist in folgende Registerkarten aufgeteilt:

- General
- Network
- NTP
- Alarm
- Device

6.3.1 GENERAL Registerkarte

Dies ist die erste Registerkarte, die bei Verwendung der Web Oberfläche angezeigt wird.

**NTP Time Status**

Dieser Bereich zeigt grundlegende Informationen über aktuelle Zeit und das aktuelle Datum der Karte an, die Zeit entspricht immer der UTC-Zeit. Der Grund dafür ist, dass NTP immer mit UTC arbeitet, und nicht mit lokaler Zeit.

Stratum zeigt den aktuellen NTP-Stratumwert der Karte 7273(RC) mit dem Wertebereich 1-16 an.

**Clock Status**

Anzeige des aktuellen Synchronisationsstatus vom **hopf** Basis-Systems mit den möglichen Werten:

- **invalid** ungültige Uhrzeit
- **C** das Uhrensystem läuft auf Quarz-Betrieb (C = Crystal)
- **r** das Uhrensystem läuft synchron zur Synchronisationsquelle
- **R** das Uhrensystem läuft synchron zur Synchronisationsquelle und der Quarzgenerator wird geregelt (**optimaler Betriebszustand**)  

**Login**

Die Login Box wird wie im Kapitel 6.2.1 **LOGIN und LOGOUT als Benutzer** beschrieben verwendet.

### 6.3.2 NETWORK Registerkarte

Jeder Link der Navigation auf der linken Seite führt zu zugehörigen detaillierten Einstellungsmöglichkeiten.

**Änderung von Netzwerk-Parametern**

Änderungen der Netzwerk-Parameter (z.B. IP-Adresse) werden nach dem betätigen von **Apply** sofort wirksam.

Die Änderung sind jedoch noch nicht dauerhaft gespeichert. Hierzu ist es erforderlich mit den neuen Netzwerk-Parametern erneut auf den WebGUI zuzugreifen und die Werte mit **Save** dauerhaft zu speichern.
6.3.2.1 Host/Nameservice

Einstellung für die eindeutige Netzwerkerkennung.

6.3.2.1.1 Hostname

Die Standardeinstellung für den Hostname ist "hopf7273", dieser Name sollte der jeweiligen Netzwerkinfrastruktur angepasst werden.

Im Zweifelsfall die Standardeinstellung belassen oder den zuständigen Netzwerkadministrator fragen.

Die Bezeichnung für den Host Namen muss folgenden Bedingungen entsprechen:

- Der Hostnamen darf nur die Zeichen 'A'-'Z', '0'-'9', '-' und '.' enthalten. Bei den Buchstaben wird nicht zwischen Gross- und Kleinschreibung unterschieden.
- Das Zeichen '.' darf nur als Trenner zwischen Labels in Domainnamen vorkommen.
- Das Zeichen '-' darf nicht als erstes oder letztes Zeichen eines Labels vorkommen.

Für einen ordnungsgemäßen Betrieb der Karte ist ein Hostname erforderlich. Das Feld für den Hostname darf somit nicht leer sein.

6.3.2.1.2 Default Gateway

Das Standardgateway wird in der Regel über das Menü des Basis-Systems konfiguriert, kann aber auch über die Web Oberfläche verändert werden.

Beim Basis-System 7001 / 68xx wird die veränderte LAN-Konfiguration nur im Kartenflash gespeichert und IMMER überschrieben, wenn ein neuer Wert eingetragen wird.


Ist das Standardgateway nicht bekannt, muss dieses vom Netzwerkadministrator erfragt werden. Ist kein Standardgateway verfügbar (Spezialfall), trägt man 0.0.0.0 in das Eingabefeld ein oder lässt das Feld leer.

6.3.2.1.3 DNS-Server 1 & 2

Will man vollständige Hostnamen verwenden (hostname.domainname), oder mit reverse lookup arbeiten, sollte man die IP-Adresse des DNS-Servers eintragen.

Ist der DNS-Server nicht bekannt, muss dieser vom Netzwerkadministrator erfragt werden.

Ist kein DNS-Server verfügbar (Spezialfall), trägt man 0.0.0.0 in das Eingabefeld ein oder lässt das Feld leer.
6.3.2.2 Netzwerkschnittstelle (Network Interface ETH0)

Konfiguration der Ethernetschnittstelle ETH0 der Karte 7273(RC)

6.3.2.2.1 Default Hardware Address (MAC)

Die werkseitig zugewiesene MAC-Adresse kann nur gelesen werden, der Benutzer kann sie nicht verändern. Sie wird von der Firma hopf Elektronik GmbH für jede Ethernet-Schnittstelle einmalig zugewiesen.

Weiter Informationen zur MAC-Adresse für die Karte 7273(RC) sind dem Kapitel 1.2.2 MAC-Adresse für ETH0 zu entnehmen.

MAC-Adressen der Firma hopf Elektronik GmbH beginnen mit 00:03:C7:xx:xx:xx.

6.3.2.2.2 Kunden Hardware Address (MAC)

Die von hopf zugewiesene MAC-Adresse kann nach Bedarf durch eine beliebige Kunden-MAC-Adresse ersetzt werden. Im Netzwerk identifiziert sich die Karte dann mit der Kunden-MAC-Adresse, die im WebGUI angezeigte Default Hardware Address bleibt jedoch unverändert.

Bei der Vergabe der Kunden-MAC-Adresse sind doppelte MAC-Adressen im Ethernet zu vermeiden.
Ist die MAC-Adresse nicht bekannt, muss diese vom Netzwerkadministrator erfragt werden.

Für die Verwendung der Kunden-MAC-Adresse ist die Funktion Use Custom Hardware Address (MAC) mit enable zu aktivieren.
Die Kunden-MAC-Adresse ist in hexadezimaler Form mit Doppelpunkten als Trennzeichen, wie im folgenden Beispiel beschrieben, zusetzen. Beispiel: \textbf{00:03:c7:55:55:02}

Die von \textit{hopf} zugewiesene MAC-Adresse kann jederzeit wieder, durch das deaktivieren (disable) dieser Funktion, aktiviert werden.

Es sind keine MAC-Multicast-Adressen zulässig!

\subsection{DHCP}

Soll DHCP verwendet werden, wird über das Menü des \textit{hopf} Basis-Systems 0.0.0.0 für die IP-Adresse eingesetzt (ebenfalls für Gateway und Netzmaske). Diese Änderung kann auch über die Web-Oberfläche durch Aktivieren des DHCP Mode erreicht werden.

\subsection{IP-Adresse}

Die IP-Adresse wird in der Regel über das Menü des \textit{hopf} Basis-Systems konfiguriert, sie kann aber auch über die Web Oberfläche verändert werden.

Beim Basis-System 7001 / 68xx wird die veränderte LAN-Konfiguration nur im Kartenflash gespeichert und IMMER überschrieben, wenn ein neuer Wert eingetragen wird.


Ist die zu verwendende IP-Adresse nicht bekannt, muss diese vom Netzwerkadministrator erfragt werden.

\subsection{Netzmaske (Network Mask)}

Die Netzmaske wird in der Regel über das Menü des \textit{hopf} Basis-Systems konfiguriert, kann aber auch über die Web Oberfläche verändert werden.

Beim Basis-System 7001 / 68xx wird die veränderte LAN-Konfiguration nur im Kartenflash gespeichert und IMMER überschrieben, wenn ein neuer Wert eingetragen wird.


Ist die zu verwendende Netzmaske nicht bekannt, muss diese vom Netzwerkadministrator erfragt werden.
6.3.2.2.6 Betriebsmodus (Operation Mode)

Normalerweise gleicht das Netzwerkgerät den Datenfluss und den Duplex Modus automatisch an das Gerät an, mit dem es verbunden wird (z.B. HUB, SWITCH). Muss das Netzwerkgerät eine bestimmte Geschwindigkeit oder einen bestimmten Duplex Modus haben, so kann dies über die Web Oberfläche konfiguriert werden. Der Wert sollte nur in speziellen Fällen verändert werden, im Normalfall wird die automatische Einstellung verwendet.

**Operation mode**

```
Auto negotiate
10 Mbps / half duplex
100 Mbps / half duplex
10 Mbps / full duplex
100 Mbps / full duplex
```

In Einzelfällen kann es vorkommen, dass es bei aktiviertem "Auto negotiate" zu Problemen zwischen den Netzwerkkomponenten kommt und der Abstimmprozess fehlschlägt.

In diesen Fällen wird empfohlen die Netzwerkgeschwindigkeit in Karte 7273(RC) und der angeschlossenen Netzwerkkomponente manuell auf denselben Wert festzulegen.

6.3.2.2.7 Maximum Transmission Unit (MTU)

Die Maximum Transmission Unit beschreibt die maximale Paketgröße eines Protokolls der Vermittlungsschicht (Schicht 3 des OSI-Modells), gemessen in Oktetten, welche ohne Fragmentierung in den Rahmen eines Netzes der Sicherungsschicht (Schicht 2 des OSI-Modells) übertragen werden kann.

Die Karte 7273(RC) wird mit der Standardeinstellung 1356 ausgeliefert.
6.3.2.3 Routing

Wird die Karte nicht nur im lokalen Subnetz eingesetzt, muss eine Route konfiguriert werden.

Routing

Wird die Karte nicht nur im lokalen Subnetz eingesetzt, muss eine Route konfiguriert werden. Routen, bei denen der Gateway / Gateway-Host nicht im lokalen Subnetzbereich der Karte ist, können nicht verwendet werden.

Die Parametrierung dieses Features ist ein kritischer Vorgang, da es bei falscher Konfiguration zu erheblichen Problemen im Netzwerk kommen kann!

Im Bild oberhalb kann man jede konfigurierte Route der Basis-System Routing Table sehen, ebenso die vom Benutzer definierten Routen (User Defined Routes)

Die Karte kann nicht als Router eingesetzt werden!
6.3.2.4 Management (Management-Protocols – HTTP, SNMP etc.)

Protokolle, die nicht gebraucht werden, sollten aus Sicherheitsgründen deaktiviert werden. Eine korrekt konfigurierte Karte ist immer über die Web Oberfläche erreichbar.

Wird die Verfügbarkeit für ein Protokoll geändert (enable/disable), tritt diese Änderung sofort in Kraft.

Sollten versehentlich alle Protocol Kanäle "disabled" werden wird nach dem Versuch zu speichern der SSH Kanal automatisch wieder "enabled".

Nach einem Factory-Default ist der HTTP Kanal "enabled".

Für die korrekte Operation des SNMP müssen alle Felder ausgefüllt sein. Sind nicht alle Werte bekannt, müssen diese beim Netzwerkadministrator erfragt werden.

Bei Verwendung von SNMP-Traps ist hier das Protokoll SNMP zu aktivieren (enabled).

Diese Serviceeinstellungen sind global gültig! Services mit dem Status disable sind von extern nicht erreichbar und werden von der Karte nicht nach außen zur Verfügung gestellt!
6.3.2.4.1 SNMPv2 / SNMPv3

Beide Protokolle SNMPv2 und SNMPv3 werden unterstützt und können separat voneinander konfiguriert und aktiviert werden.

System Location und System Contact sind global gültige Einstellungen und gelten für beide Protokolle (SNMPv2 / SNMPv3).

Um SNMPv2 zu deaktivieren, müssen die beiden Felder SNMP Read Only Community und SNMP Read Write Community leer bleiben.

<table>
<thead>
<tr>
<th>SNMPv2</th>
<th>SNMPv2 aktiviert</th>
<th>SNMPv2 deaktiviert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Only Community:</td>
<td>gesetzt (z.B. public)</td>
<td>leer</td>
</tr>
<tr>
<td>Read/Write Community:</td>
<td>gesetzt (z.B. secret)</td>
<td>leer</td>
</tr>
</tbody>
</table>

Um SNMPv3 zu aktivieren müssen die folgenden Felder gesetzt werden:

<table>
<thead>
<tr>
<th>SNMPv3</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Name:</td>
<td>SNMPv3 wird aktiviert (entspricht dem Benutzernamen)</td>
</tr>
<tr>
<td>Access Rights:</td>
<td>Äquivalent zu den Read/Write Communities in SNMPv2</td>
</tr>
<tr>
<td>Authentication Protocol:</td>
<td>Authentifizierung (MD5 oder SHA Hash)</td>
</tr>
<tr>
<td>Privacy Protocol:</td>
<td>Verschlüsselung (DES oder AES Algorithmus)</td>
</tr>
</tbody>
</table>

In SNMPv3 gibt es drei Sicherheitsstufen, die durch das Weglassen der Passphrasen eingestellt werden können:

<table>
<thead>
<tr>
<th>SNMPv3</th>
<th>noAuthNoPriv</th>
<th>authNoPriv</th>
<th>authPriv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Passphrase:</td>
<td>leer</td>
<td>gesetzt</td>
<td>gesetzt</td>
</tr>
<tr>
<td>Privacy Passphrase:</td>
<td>leer</td>
<td>leer</td>
<td>gesetzt</td>
</tr>
</tbody>
</table>

Derzeit wird nur ein Benutzer unterstützt.
6.3.2.5 Time

Aktivierung und Konfiguration verschiedener Synchronisationsprotokolle.

6.3.2.5.1 Synchronisationsprotokolle (Time-Protocols – NTP, SNTP etc.)

Benötigte Synchronisationsprotokolle können hier aktiviert (enabled) werden.

- NTP (inkl. SNTP)
- DAYTIME
- TIME
- SINEC H1 time datagram

6.3.2.5.2 SINEC H1 Uhrzeitlegramm (SINEC H1 time datagram)

Konfiguration des SINEC H1 Uhrzeitlegramms.

Sendezyklus des im Broadcast gesendeten SINEC H1 Uhrzeitlegramms (Send Interval)

- sekündliches Senden
- 10 sekündliches Senden
- 60 sekündliches Senden
Zeitbasis (Timebase) siehe auch Kapitel 10.2.1 Zeitspezifische Ausdrücke

- Lokal-Zeit
- UTC-Zeit
- Standard-Zeit
- Standard-Zeit mit lokalem Sommerzeit-/ Winterzeitstatus

Ziel Mac-Adresse (Destination MAC Address)

- 09:00:06:03:FF:EF
- 09:00:06:01:FF:EF
- FF:FF:FF:FF:FF:FF

Synchronisationsstatus abhängiger Sendebeginn (Minimum Accuracy)

Mit dieser Einstellung wird definiert, ab welchem internen Status des Regelprozesses das SINEC H1 Uhrzeittelegramms gesendet werden soll (siehe auch Kapitel 10.6 Genauigkeit & NTP Grundlagen und Kapitel 8 Technische Daten):

- LOW
- MEDIUM
- HIGH

Mit der Einstellung Minimum Accuracy = LOW kann es zur Ausgabe von unsynchronisierten (und somit möglicherweise falschen) Zeitinformationen kommen.

6.3.2.5.3 Sendezeitpunkt des SINEC H1 Uhrzeittelegramm

Die Einstellung für den Sendezeitpunkt des SINEC H1 Uhrzeittelegramm erfolgt mit DIP-Schalterbank DS1 Schalter SW6

<table>
<thead>
<tr>
<th>DS1 SW6</th>
<th>Sendezeitpunkt des SINEC H1 Uhrzeittelegramms</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>sekundengleich (Default)</td>
</tr>
<tr>
<td></td>
<td>z.B. Sendezzeitpunkt (UTC, absolut): gesendete Zeitinformation:</td>
</tr>
<tr>
<td></td>
<td>12:33:00,001</td>
</tr>
<tr>
<td>on</td>
<td>um EINE Sekunde nachlaufend</td>
</tr>
<tr>
<td></td>
<td>z.B. Sendezzeitpunkt (UTC, absolut): gesendete Zeitinformation:</td>
</tr>
<tr>
<td></td>
<td>12:33:01,002</td>
</tr>
</tbody>
</table>

6.3.3 NTP Registerkarte


Die NTP-Funktionalität wird von einem NTP-Dämon, der auf dem Embedded-Linux der Karte läuft, zur Verfügung gestellt.
In Abhängigkeit vom hopf Basis-System kann es unter ungünstigen Umständen mehrere Stunden dauern, bis eine hohe Langzeitgenauigkeit erreicht wird. Während dieser Zeit passt der NTP-Algorithmus die internen Genauigkeitsparameter an.

Für die Verwendung von NTP ist das Time Protokoll NTP zu aktivieren (siehe Kapitel 6.3.2.5 Time)

Nach allen Änderungen die NTP betreffen muss ein Neustart des NTP Dienstes auf der Karte 7273(RC) durchgeführt werden. (siehe Kapitel 6.3.3.6 NTP Neustart (Restart NTP))


6.3.3.1 System Info


Die verwendete Version des NTP passt die Schaltsekunde (leapsecond) korrekt an.

Die Karte 7273(RC) arbeitet als NTP Server mit Stratum 1 und gehört zur Klasse der besten zurzeit verfügbaren NTP Server, da sie über eine Referenzuhr mit direktem Zugriff verfügt.
6.3.3.2 Kernel Info

Die Kernel Info Übersicht zeigt die aktuellen Fehlerwerte der internen Embedded-Linux-Uhr an. Beide Werte werden sekündlich intern aktualisiert.

Dieser Screenshot zeigt einen maximalen Fehler der Kernel-Uhr von 5,747 msec (Millisekunden) an, der geschätzte Fehlerwert liegt bei 5μs (Mikrosekunden).

Die hier angezeigten Werte beruhen auf der Berechnung des NTP-Dienstes. Sie haben keine Aussagekraft zu der Genauigkeit des hopf Basis-Systems.
### 6.3.3.3 Peers

Die Peers Übersicht wird verwendet um das Verhalten des konfigurierten NTP-Servers/Treibers und des NTP Algorithmus selbst zu verfolgen.

Die angezeigte Information ist identisch mit der abrufbaren Information mittels NTPQ oder NTPDC Programmen.

Jeder NTP-Server/Treiber, der in der NTP-Serverkonfiguration eingestellt wurde, wird in der Peer Information angezeigt.

Der Status der Verbindung wird in der Reachability Spalte angezeigt (not reachable, bad, medium, reachable).

Im oberen Bild sind drei Zeilen zu sehen. Die erste Zeile stellt den internen `hopf – refclock ntp driver` dar, der die Zeitinformation direkt vom `hopf` Basis-Systems bekommt.

In der zweiten und dritten Zeile werden externe NTP-Server angezeigt, die zusätzlich zum internen `hopf – refclock ntp driver` im Menü Server Configuration hinzugefügt werden können.

Eine kurze Erklärung bzw. Definition der angezeigten Werte ist im *Kapitel 10.6 Genauigkeit & NTP Grundlagen* zu finden.

Das Zeichen in der ersten Spalte von links stellt den aktuellen Zustand der NTP-Assoziation im Selektionsalgorithmus von NTP dar. Im Glossar ist eine Liste der möglichen Zeichen und eine Beschreibung zu finden (siehe *Kapitel 10.2 Tally Codes (NTP spezifisch)*).
6.3.3.4 Server Konfiguration

Wählt man den Link "Server Configuration" aus, werden die Grundeinstellungen für die NTP Basisfunktionalität angezeigt.

Standardmäßig ist der NTP-hopf-refclock Treiber bereits konfiguriert (127.127.38.0 in der Peers Übersicht) und wird hier nicht explizit angezeigt.

6.3.3.4.1 Synchronisationsquelle (General / Synchronization source)

Als "Synchronisation source" muss abhängig von der jeweiligen Synchronisationsquelle des hopf Basis-Systems entweder GPS oder DCF77 gewählt werden. Dies ist erforderlich um den NTP Algorithmus zur Berechnung der Genauigkeit auf die Synchronisationsquelle abzustimmen.

Wird die Einstellung GPS gewählt, obwohl es sich um ein Basis-System ohne GPS Synchronisation (mit der entsprechend hohen Genauigkeit) handelt, ist es möglich, dass der Wert HIGH für Accuracy nie erreicht wird.

6.3.3.4.2 NTP Syslog Nachrichten (General / Log NTP Messages to Syslog)

Diese Option aktiviert oder deaktiviert Syslog Nachrichten, die vom NTP-Service generiert werden.

Sollte diese Option deaktiviert sein oder Syslog in der Registerkarte ALARM (siehe Kapitel 6.3.4.1 Syslog Konfiguration) nicht konfiguriert sein, hat dieser Wert keine Auswirkung.
6.3.3.4.3 Quarzbetrieb (Crystal Operation)

**Crystal Operation / Switch to specific stratum**

Läuft das hopf Basis-System im Quarzbetrieb (Status "C"), verhält sich der NTP-Dienst der Karte 7273(RC) in der Regel so, dass die Zeitübernahme vom hopf Basis-System gestoppt und der Stratum Wert auf 16 (in NTP als ungültig definiert) zurückgesetzt wird.


Dieses NTP-Verhalten während des Quarzbetriebs des hopf Basis-Systems kann geändert werden. Hierfür ist die Funktion "Switch to specific stratum" zu aktivieren indem man den Wert auf "enabled" stellt und den sogenannten Degradierungsstratum (= Stratum Wert der Karte 7273(RC) während des Quarzbetriebs des Basis-Systems) einstellt.

Um NTP Clients auch während des Quarzbetriebs des Basis-Systems zu synchronisieren oder zum Test der Basis-Systeme ohne angeschlossene Synchronisationsquelle, kann in der Einstellung "enabled" ein beliebiger Stratum Wert zwischen 1 und 15 gesetzt werden.

**Crystal Operation / Stratum in crystal operation**

Der hier festgelegte Wert (Bereich 1-15) gibt den ausgegebenen Rückfall-NTP-Stratumlevel der Karte im Synchronisationsstatus "Quarz" an. Wird im Status "Quarz" keinerlei Degradierung gewünscht so ist Stratum 1 zu konfigurieren.

Es MUSS zusätzlich der NTP Service neu gestartet werden (siehe Kapitel 6.3.3.6 NTP Neustart (Restart NTP)).

Bei Verwendung der Option "Switch to specific stratum" erfolgt während Quarzbetrieb des Basis-Systems eine Synchronisation der NTP Clients mit der im General-Menü des WebGUI angezeigten Zeitinformation. Ob diese Zeitinformation (z.B. durch Drift) ungenau ist oder es sich um eine manuell gesetzte (falsche) Zeit handelt kann der NTP Client nicht detektieren!

Wird für "Stratum in crystal operation" der Wert 1 verwendet, kann der NTP Client nicht unterscheiden ob das Basis-System synchronisiert oder im Quarzbetrieb arbeitet. Wenn eine Unterscheidung zwischen synchronisiertem und Quarzbetrieb gewünscht ist, muss der Degradierungsstratum auf einen Wert zwischen 2 und 15 gesetzt werden.

Der Wert ist nur Einstellbar wenn die Funktion "Switch to specific stratum" aktiviert ist.
6.3.3.4.4 Broadcast / Broadcast Address

Dieser Bereich wird verwendet, um die Karte als Broadcast oder Multicast Server zu konfigurieren.

Der Broadcast Modus in NTPv3 und NTPv4 ist auf Clients im gleichen Sub-Netz sowie Ethernets, die die Broadcast Technologie unterstützen, limitiert.

Diese Technologie geht in der Regel nicht über den ersten Hop (Netzwerkknoten - wie einem Router oder einem Gateway) hinaus.


Dieser Bereich kann ebenfalls dazu verwendet werden, um die LAN Karte als Multicast Server zu konfigurieren. Die Konfiguration eines Multicast Servers ist der eines Broadcast Servers sehr ähnlich, nur wird anstelle der Broadcast-Adresse eine Multicast-Gruppenadresse (Class D) verwendet.

Eine Erklärung der Multicast-Technologie geht über den Themenbereich dieses Dokuments hinaus.


6.3.3.4.5 Broadcast / Authentication / Key ID

Aus Sicherheitsgründen können Broadcast-Pakete mit einer Authentifizierung geschützt werden.

Wird hier eine Sicherheitsmethode ausgewählt, muss diese zusätzlich in den Sicherheitseinstellungen der Registerkarte NTP konfiguriert werden. Wählt man den Symmetric Key aus, muss ein Schlüssel festgelegt werden.

6.3.3.4.6 Zusätzliche NTP Server (Additional NTP server)

Das Hinzufügen weiterer NTP Server bietet die Möglichkeit, ein Sicherheitssystem für den Time Service zu implementieren, dies beeinträchtigt jedoch die Genauigkeit und Stabilität der Karte.

Detaillierte Informationen zu diesem Thema können in der NTP Dokumentation gefunden werden (http://www.ntp.org/).
6.3.3.5 Erweiterte NTP Konfiguration (Extended Configuration)


Damit diese spezielle NTP-Ausgabe aktiviert werden kann muss die im WebGUI dargestellte Einverständniserklärung bestätigt werden, in dem das "I agree"-Feld abgehakt wird.

6.3.3.5.1 Unterdrückung von unspezifizierten NTP-Ausgaben
(Block Output when Stratum Unspecified)

Mit Aktivierung (enable) dieser Funktion werden die unspezifizierten NTP-Ausgaben unterdrückt die z.B. bei einem Neustart vom NTP generiert werden.

6.3.3.5.2 NTP Zeitbasis (Timebase)

Mit dieser Funktion kann für kundenspezifische Anwendungen die Zeitbasis der NTP-Ausgabe eingestellt werden.

Mit Aktivierung dieser Funktion ist das ausgegebene Zeitprotokoll der Karte 7273(RC) nicht mehr zum NTP Standard konform. Nach dem NTP Standard arbeitet NTP nur mit der Zeitbasis UTC. Im NTP Zeitprotokoll sind keine Zeitsprünge vorgesehen.

Diese Funktion ist nur für die NTP-Ausgabe zugelassen. Bei aktivierter Funktion erfolgt die Ausgabe der Karte 7273(RC) für SINEC H1 TIME DATAGRAM / TIME / DAYTIME mit einer falschen Zeitbasis. Diese Protokolle sollten daher aus Sicherheitsgründen deaktiviert werden.
Folgende Konfigurationsschritte sind für die Aktivierung der NTP Zeitbasis notwendig:

- Gewünschte NTP Zeitbasis (Timebase) auswählen.
- Die Einstellung mit **Apply Changes** in die Karte 7273 übertragen.
- Anschließend **innerhalb von 10 Sekunden** durch drücken auf **Save to Flash** die Konfiguration ausfallssicher aktivieren. Abhängig von dem aktivierten Zeitbasissprung kommt es nach der Übertragung mit Apply Changes zu einem Kartenreset, der die nicht gespeicherten Konfigurationen wieder verwirft.

**UTC - NTP mit der Zeitbasis UTC**

Nach aktuellem RFC-Standard arbeitet NTP nur mit der Zeitbasis UTC.

**Standard Time - NTP mit der Zeitbasis Standardzeit**

Bei Ausgabe des NTP-Zeitprotokolls mit Zeitbasis Standardzeit entspricht die ausgegebene Zeitinformation der UTC-Zeit zuzüglich der im Basis-System eingestellten Differenzzeit **ohne** Berücksichtigung der Sommerzeitumschaltung.

**Local Time - NTP mit der Zeitbasis Lokalzeit**

Bei Ausgabe des NTP-Zeitprotokolls mit Zeitbasis Lokalzeit entspricht die ausgegebene Zeitinformation der UTC-Zeit zuzüglich der im Basissystem eingestellten Differenzzeit und des zusätzlichen Offsets für eine eventuelle Sommerzeit.


Bei Verwendung des NTP Zeitprotokolls mit Zeitbasis Lokalzeit wird die Sommer-/Winterzeitumschaltung ein bis zwei Minuten später durchgeführt.


6.3.3.6 NTP Neustart (Restart NTP)

Beim Klick auf die Restart NTP Option erscheint folgender Bildschirm:

![Restart NTP Bildschirm]

Der Neustart des NTP Services ist die einzige Möglichkeit, NTP-Änderungen wirksam zu machen, ohne die gesamte Karte 7273(RC) neu starten zu müssen. Wie in der Warnmeldung zu sehen ist, geht die aktuell erreichte Stabilität und Genauigkeit durch diesen Neustart verloren.

Nach dem Neustart des NTP Dienstes dauert es bis zu 10 Minuten bis der NTP Dienst auf Karte 7273(RC) wieder "eingeregelt" ist bzw. sich mit der Systemzeit des Basis-Systems synchronisiert hat.

6.3.3.7 Konfigurieren der NTP-Zugriffsbeschränkungen (Access Restrictions)

Eine der erweiterten Konfigurationsoptionen für NTP ist die Access Restrictions (NTP-Zugriffsbeschränkungen).

![Access Restrictions Bildschirm]

Beschränkungen werden verwendet, um den Zugriff auf den NTP-Service der Karte zu kontrollieren und sind bedauerlicherweise die meist missverstandenen Optionen der NTP Konfiguration.

Folgende Schritte zeigen, wie Beschränkungen konfiguriert werden können - falls diese nicht benötigt werden, reicht es aus, die unveränderten Standardeinstellungen beizubehalten.


Die Wahl der korrekten Standardeinschränkungen kann die NTP Konfiguration vereinfachen, während die benötigte Sicherheit bereitgestellt werden kann.

Vor dem Start der Konfiguration müssen die Punkte 6.3.3.7.1 bis 6.3.3.7.4 vom Anwender geprüft werden:

### 6.3.3.7.1 NAT oder Firewall

<table>
<thead>
<tr>
<th>Werden eingehende Verbindungen zum NTP-Service durch NAT oder einer Stateful Inspection Firewall geblockt?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
</tr>
<tr>
<td>Ja</td>
</tr>
</tbody>
</table>

### 6.3.3.7.2 Blocken nicht autorisierter Zugriffe

<table>
<thead>
<tr>
<th>Ist es wirklich notwendig, alle Verbindungen von nicht autorisierten Hosts zu blocken, wenn der NTP-Service öffentlich zugänglich ist?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein</td>
</tr>
<tr>
<td>Ja</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
### 6.3.3.7.3 Client Abfragen erlauben

<table>
<thead>
<tr>
<th>Soll Clients erlaubt werden, die Server Status Information zu sehen, wenn sie die Zeitinformation vom NTP-Service erhalten (selbst wenn es Informationen über LAN Karte, Betriebssystem und NTPD Version sind)?</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nein</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Ja</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Wird in diesem Bereich eine Standardbeschränkung gewählt, können Ausnahmen für jeden autorisierte Server, Clients oder Subnetze in separaten Zeile deklariert werden, siehe Kapitel 6.3.3.7.5 Hinzufügen von Ausnahmen für Standardbeschränkungen.

### 6.3.3.7.4 Interner Clientschutz / Local Network ThreatLevel

<table>
<thead>
<tr>
<th>Wie viel Schutz wird vor Clients des internen Netwerks benötigt?</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Ja</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
6.3.3.7.5 Hinzufügen von Ausnahmen für Standardbeschränkungen

Sind die Standardbeschränkungen einmal eingestellt, werden eventuell Ausnahmen für spezielle Hosts/Subnetze benötigt, um Remote Time Servern und Client Hosts/Subnetzen zu erlauben, den NTP-Service zu kontaktieren.

Diese Standardbeschränkungen werden in Form von Beschränkungszeilen hinzugefügt.

<table>
<thead>
<tr>
<th>Access Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default restriction</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Ein uneingeschränkter Zugriff der Karte 7273(RC) auf den eigenen NTP-Service ist immer erlaubt, egal ob Standardbeschränkungen ignoriert werden oder nicht. Dies ist erforderlich, um NTP Werte auf der Web Oberfläche anzeigen zu können.

**Ausnahmebeschränkung hinzufügen:** (Für jeden Remote Time Server)
Beschränkungen: [ADD] drücken
IP-Adresse des Remote Time Servers eintragen.
Beschränkungen aktivieren: z.B.
notrap / nopeer / noquery

Einem speziellen Host **uneingeschränkten Zugriff** erlauben (z.B. Workstation des Systemadministrators):
Beschränkungen: [ADD] drücken
IP-Adresse 192.168.1.101
keine Beschränkungen aktivieren

Ein **Subnetz** das Empfangen von Time Server und Query Server Statistiken erlauben:
Beschränkungen: [ADD] drücken
IP-Adresse 192.168.1.0
Netzmaske 255.255.255.0
notrap / nopeer
6.3.3.7.6 Optionen zur Zugriffskontrolle

Die offizielle Dokumentation der aktuellen Implementierung der Beschränkungsanweisungen ist auf der Access Control Options Seite auf http://www.ntp.org/ zu finden.

Es gibt zahlreiche Optionen zur Zugriffskontrolle, die verwendet werden. Die wichtigsten davon sind hier detailliert beschrieben.

nomodify – "Erlaube diesem Host/Subnetz nicht, die ntpd Einstellungen zu modifizieren, es sei denn es hat den korrekten Schlüssel."

---

**Default-Einstellung:**
Immer aktiv. Kann durch Benutzer nicht geändert werden.

Standardmäßig benötigt NTP eine Authentifizierung mit symmetrischem Schlüssel, um Modifikationen mit ntpdc durchzuführen. Wird kein symmetrischer Schlüssel für den NTP-Service konfiguriert, oder wird dieser sicher aufbewahrt, ist es nicht nötig, die nomodify Option zu verwenden, es sei denn, das Authentifizierungsschema scheint unsicher zu sein.

noserver – "Sende diesem Host/Subnetz keine Zeit."
Diese Option wird verwendet, wenn einem Host/Subnetz der Zugriff auf den NTP-Service nur erlaubt ist, um den Service zu überwachen bzw. aus der Ferne zu konfigurieren.

notrust – "Ignoriere alle NTP-Pakete, die nicht verschlüsselt sind."
Diese Option sagt dem NTP-Service, dass alle NTP-Pakete ignoriert werden sollen, die nicht verschlüsselt sind (es ist zu beachten, dass dies eine Änderung ab ntp-4.1.x ist). Die notrust Option DARF NICHT verwendet werden, es sei denn NTP Crypto (z.B. symmetrischer Schlüssel oder Autokey) wurden an beiden Seiten der NTP-Verbindung (z.B. NTP-Service und Remote Time Server, NTP-Service und Client) korrekt konfiguriert.

noquery – "Erlaube diesem Host/Subnetz nicht, den NTP-Service Status abzufragen."
Die Funktionen der ntpd Statusabfrage, bereitgestellt von ntpd/ntpdc, geben einige Informationen über das laufende ntp Basis-System frei (z.B. Betriebssystem Version, ntpd Version), die unter Umständen nicht von anderen gewusst werden sollen. Es muss entschieden werden, ob es wichtiger ist, diese Information zu verbergen, oder ob man den Clients die Möglichkeit gibt, Synchronisationsinformationen über ntpd zu sehen.

ignore – "Damit werden ALLE Pakete abgewiesen, inklusive ntpq und ntpdc Abfragen".

kod – "Ist diese Option bei einem Zugriffsfehler aktiviert, wird ein kiss-o'-death (KoD) Paket gesendet."

KoD Pakete sind limitiert. Sie können nicht öfter als einmal pro Sekunde gesendet werden. Wenn ein anderes KoD Paket innerhalb einer Sekunde seit dem letzten Paket vorkommt, wird dieses Paket entfernt.

notrap – "Verweigert die Unterstützung von mode 6 control message trap service, um Hosts abzugleichen."
Der trap Service ist ein Subsystem des ntpq control message protocols, dieser Service loggt Remote Ereignisse bei Programmen.

version – "Verweigert Pakete, die nicht der aktuellen NTP Version entsprechen."

---

Änderungen von Werten haben keine sofortige Wirkung nach dem Klick auf das "Apply" Symbol. Es MUSS zusätzlich der NTP Service neu gestartet werden (siehe Kapitel 6.3.3.6 NTP Neustart (Restart NTP)).
6.3.3.8 Symmetrischer Schlüssel (Symmetric Key)

6.3.3.8.1 Wofür eine Authentifizierung?

Die meisten Benutzer von NTP benötigen keine Authentifizierung, da das Protokoll mehrere Filter (for bad time) beinhaltet.

Die Verwendung der Authentifizierung ist trotzdem üblich.

Dafür gibt es einige Gründe:

- Zeit soll nur von gesicherten Quellen verwendet werden
- Ein Angreifer broadcastet falsche Zeitsignale
- Ein Angreifer gibt sich als anderer Time Server aus
6.3.3.8.2 Wie wird die Authentifizierung beim NTP-Service verwendet?

Client und Server können eine Authentifizierung durchführen, indem clientseitig ein Schlüsselwort und serverseitig eine Beschränkung verwendet wird.

NTP verwendet Schlüssel, um die Authentifizierung zu implementieren. Diese Schlüssel werden verwendet, wenn Daten zwischen zwei Maschinen ausgetauscht werden.

Grundsätzlich müssen beide Seiten diesen Schlüssel wissen. Der Schlüssel ist in der Regel im Verzeichnis "/etc/ntp.keys" zu finden, ist unverschlüsselt und versteckt vor der Öffentlichkeit. Das bedeutet, dass der Schlüssel an alle Kommunikationspartner auf gesichertem Weg verteilt werden muss. Um die Schlüsseldatei zu verteilen, kann diese über die Registerkarte DEVICE unter Downloads heruntergeladen werden. Um darauf zugreifen zu können, muss man als master eingeloggt sein.


6.3.3.8.3 Wie erstellt man einen Schlüssel?

Ein Schlüssel ist eine Folge von bis zu 31 ASCII Zeichen, einige Zeichen mit spezieller Bedeutung können nicht verwendet werden (alphanumerische Zeichen sowie die folgenden Zeichen verwendet werden: [ ] ( ) * - ! $ % & / = ?).


Doppelte Schlüssel-IDs sind nicht erlaubt. Nachdem die Grundlagen für Schlüsseln jetzt erläutert sind, sollte ein Schlüssel so gut wie ein Passwort eingesetzt werden können.

Der Wert des Request Key Feldes wird als Passwort für das ntpdc Werkzeug verwendet, während der Wert des Control Key Feldes als Passwort für das ntpq Werkzeug verwendet wird.


6.3.3.8.4 Wie arbeitet die Authentifizierung?

Die grundlegende Authentifizierung ist eine digitale Signatur, und keine Datenverschlüsselung (wenn es da Unterschiede gibt). Das Datenpaket zusammen mit dem Schlüssel wird dazu verwendet, um eine nicht umkehrbare Nummer zu erstellen, die dem Paket angefügt wird.

Der Empfänger (er hat denselben Schlüssel) führt dieselbe Rechnung durch und vergleicht die Resultate. Stimmen die Ergebnisse überein, war die Authentifizierung erfolgreich.
6.3.3.9 Automatische Verschlüsselung (Autokey)

NTPv4 bietet ein neues Autokey Schema, basierend auf dem **public key cryptography**.

Der **public key cryptography** ist grundsätzlich betrachtet sicherer als der **symmetric key cryptography**, da der Schutz auf einem privaten Wert basiert, der von jedem Host generiert wird und niemals sichtbar ist.

Um die Autokey v2 Authentifizierung zu aktivieren, muss die Autokey Enabled Option auf "enabled" gestellt werden und ein Passwort spezifiziert werden (darf nicht leer sein).


Wenn die NTS Karte Teil einer NTP Trust Gruppe sein soll, kann ein Gruppenschlüssel festgelegt werden und mit der "Upload now" Taste hochgeladen werden.


Änderungen von Werten haben keine sofortige Wirkung nach dem Klick auf das Apply Symbol. Es MUSS zusätzlich der NTP Service neu gestartet werden (siehe Kapitel 6.3.3.6 NTP Neustart (Restart NTP)).
6.3.4 **ALARM Registerkarte**

Jeder Link der Navigation auf der linken Seite führt zu zugehörigen detaillierten Einstellungs-möglichkeiten.

6.3.4.1 **Syslog Konfiguration**

Um jede konfigurierte Alarmsituation, die in der Karte auftritt, in einem Linux/Unix-Syslog zu speichern, muss der Name oder die IP-Adresse eines Syslog Servers eingegeben werden. Ist alles korrekt konfiguriert und aktiviert (abhängig vom Syslog Level), wird jede Nachricht zum Syslog Server gesendet und dort in der Syslog Datei gespeichert.

**Syslog verwendet den Port 514.**

Das mitloggen auf der Karte selbst ist nicht möglich, da der interne Speicher nicht ausreicht.


Der Alarm Level gibt den Prioritätslevel der zu sendenden Nachrichten an ab welchem Level gesendet werden soll (siehe **Kapitel 6.3.4.4 Alarm Nachrichten**).

<table>
<thead>
<tr>
<th>Alarm Level</th>
<th>gesendete Nachrichten</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>keine Nachrichten</td>
</tr>
<tr>
<td>info</td>
<td>Info / Warnung / Fehler / Alarm</td>
</tr>
<tr>
<td>warning</td>
<td>Warnung / Fehler / Alarm</td>
</tr>
<tr>
<td>error</td>
<td>Fehler / Alarm</td>
</tr>
<tr>
<td>alarm</td>
<td>Alarm</td>
</tr>
</tbody>
</table>

Der auf dieser Karte implementierte NTP-Dienst kann eigene Syslog Nachrichten senden (s. **Kapitel 6.3.3.4.2 NTP Syslog Nachrichten (General / Log NTP Messages to Syslog)**).

Generierte Syslogmeldungen der Karte 7273(RC) sind im **Kapitel 10.5 Syslogmeldungen** beschrieben.
6.3.4.2 E-mail Konfiguration

Um dem technischen Personal die Möglichkeit zu bieten, die IT Umgebung zu überwachen bzw. zu kontrollieren, ist die E-mail Benachrichtigung eine der wichtigen Features dieses Gerätes.

Es ist möglich, verschiedene, unabhängige E-mail-Adressen zu konfigurieren, die jeweils unterschiedliche Alarm Levels haben.

Abhängig vom konfigurierten Level wird eine E-mail nach Auftreten eines Fehlers an den jeweiligen Empfänger gesendet.

Für die korrekte Konfiguration muss ein gültiger E-mail Server (SMTP Server) eingetragen werden.

Manche E-mail Server akzeptieren Nachrichten nur dann, wenn die eingetragene Senderadresse gültig ist (Spam Schutz). Diese kann im Sender Address Feld eingefügt werden.

Der Alarm Level gibt den Prioritätslevel der zu sendenden Nachrichten an ab welchem Level gesendet werden soll (siehe Kapitel 6.3.4.4 Alarm Nachrichten).

<table>
<thead>
<tr>
<th>Alarm Level</th>
<th>gesendete Nachrichten</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>keine Nachrichten</td>
</tr>
<tr>
<td>info</td>
<td>Info / Warnung / Fehler / Alarm</td>
</tr>
<tr>
<td>warning</td>
<td>Warnung / Fehler / Alarm</td>
</tr>
<tr>
<td>error</td>
<td>Fehler / Alarm</td>
</tr>
<tr>
<td>alarm</td>
<td>Alarm</td>
</tr>
</tbody>
</table>
### 6.3.4.3 SNMP Konfiguration / TRAP Konfiguration

Um die Karte über SNMP zu überwachen ist es möglich, einen SNMP-Agent (mit MIB) zu verwenden oder SNMP Traps zu konfigurieren.

**SNMP Traps** werden über das Netzwerk zu den konfigurierten Hosts gesendet. Man beachte, dass sie auf UDP basieren, daher ist es nicht garantiert, dass sie den konfigurierten Host erreichen!

Es können mehrere Hosts konfiguriert werden, allerdings haben alle denselben Alarm-Level.

Die private *hopf* enterprise MIB steht ebenfalls über Web zur Verfügung (siehe Kapitel 6.3.5.13 Download von Konfigurationen / SNMP MIB.

Der Alarm Level gibt den Prioritätslevel der zu sendenden Nachrichten an ab welchem Level gesendet werden soll (siehe Kapitel 6.3.4.4 Alarm Nachrichten).

<table>
<thead>
<tr>
<th>Alarm Level</th>
<th>gesendete Nachrichten</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>keine Nachrichten</td>
</tr>
<tr>
<td>info</td>
<td>Info / Warnung / Fehler / Alarm</td>
</tr>
<tr>
<td>warning</td>
<td>Warnung / Fehler / Alarm</td>
</tr>
<tr>
<td>error</td>
<td>Fehler / Alarm</td>
</tr>
<tr>
<td>alarm</td>
<td>Alarm</td>
</tr>
</tbody>
</table>

Für die Verwendung von SNMP ist das Protokoll SNMP zu aktivieren (siehe Kapitel 0 Management (Management-Protocols – HTTP, SNMP etc.)).
6.3.4.4 Alarm Nachrichten (Alarm Messages)

Jede im Bild gezeigte Nachricht kann mit einem der gezeigten Alarm Levels konfiguriert werden. Wird der Level NONE ausgewählt, bedeutet das, dass diese Nachricht komplett ignoriert wird.

Abhängig von den Nachrichten, ihrer konfigurierten Levels und der konfigurierten Notification Levels der E-mails, wird im Falle eines Ereignisses eine entsprechende Aktion durchgeführt.

Geänderte Einstellungen sind erst nach Apply und Save ausfallsicher gespeichert.
6.3.5 DEVICE Registerkarte

Jeder Link der Navigation auf der linken Seite führt zu zugehörigen detaillierten Einstellungs-möglichkeiten.

Diese Registerkarte stellt die grundlegende Information über die Kartenhardware wie auch Software/Firmware zur Verfügung. Die Passwort Verwaltung sowie die Update Services für die Karte werden ebenfalls über diese Webseite zugänglich gemacht. Der komplette Downloadbereich ist auch ein Bestandteil dieser Seite.

6.3.5.1 Geräte Information (Device Info)

Sämtliche Informationen stehen ausschließlich schreibgeschützt und nur lesbar zur Verfügung. Dem Benutzer stehen Informationen über die Kartentype, Seriennummer, aktuelle Softwareversionen für Servicezwecke und Serviceanfragen bereit.
6.3.5.2 Hardware Information


Unter "Current DIP Switch Settings" wird die Schalterstellung des auf der Karte 7273(RC) befindlichen DIP-Schalters dargestellt.
6.3.5.3 Wiederherstellung der Werkseinstellungen (Factory Defaults)

In manchen Fällen kann es nötig oder erwünscht sein, sämtliche Einstellungen der Karte auf Ihren Auslieferungszustand (Werkseinstellungen) zurückzusetzen.

**WARNING!**

RESET to factory defaults is a critical action, all values will be set to default – the device will be rebooted immediately. Are you sure you want to reset to factory defaults now?

**Reset now**

Mit dieser Funktion werden sämtliche Werte im Flashspeicher auf ihren Defaultwert zurückgesetzt, dies betrifft auch die Passwörter (siehe Kapitel 9 Werkseinstellungen / Factory- Defaults Karte 7273(RC)).

Die Anmeldung erfolgt als Master Benutzer laut Beschreibung im Kapitel 6.2.1 LOGIN und LOGOUT als Benutzer.

Drücken von "Reset now" und warten bis der Neustart beendet ist.

Ist dieser Vorgang einmal ausgelöst worden, gibt es KEINE Möglichkeit, die gelöschte Konfiguration wiederherzustellen.

Nach einem Factory Default ist eine vollständige Überprüfung und gegebenenfalls neue Konfiguration der Karte notwendig, insbesondere die Default MASTER- und DEVICE-Passwörter sollten neu gesetzt werden.
6.3.5.4 Wiederherstellung gesicherter Kundeneinstellungen (Custom Defaults)

Diese Funktion ermöglicht eine aktuelle Konfiguration als CUSTOM DEFAULTS zu speichern.

Es wird hierbei die derzeitige Konfiguration gesichert. Es ist hierfür unerheblich ob die Konfiguration bereits mit "SAVE to FLASH" gespeichert oder nur mit "Apply" aktiviert wurde.

Um ein CUSTOM DEFAULTS zu aktivieren muss initial eine Konfiguration gespeichert werden.


Wurde kein CUSTOM DEFAULT über den WebGUI durch den Anwender gespeichert, so wird über den Reset-(Default) Taster, anstelle des CUSTOM DEFAULT ein FACTORY DEFAULT ausgelöst.

Mit dieser Funktion wird die gesicherte Konfiguration wieder in den Flashspeicher zurückgeschrieben.

Die Einstellungen für Activation Keys (z.B. ein eingegebener Activation Key) werden durch die Funktionen CUSTOM DEFAULTS nicht gelöscht bzw. wiederhergestellt.
6.3.5.5 Neustart der Karte (Reboot Device / Hardware Reset)

Der Neustart betrifft lediglich die Karte 7273(RC).

Reboot Device: Restart des internen Betriebssystems

<table>
<thead>
<tr>
<th>Device Info</th>
<th>Reboot Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Info</td>
<td></td>
</tr>
<tr>
<td>Factory Defaults</td>
<td></td>
</tr>
<tr>
<td>Custom Defaults</td>
<td></td>
</tr>
<tr>
<td>Reboot Device</td>
<td></td>
</tr>
<tr>
<td>Hardware Reset</td>
<td></td>
</tr>
<tr>
<td>Image Update</td>
<td></td>
</tr>
<tr>
<td>NTP Firmware Update</td>
<td></td>
</tr>
<tr>
<td>Upload Certificate</td>
<td></td>
</tr>
<tr>
<td>Customized Security Banner</td>
<td></td>
</tr>
<tr>
<td>Minute Pulse (PPM)</td>
<td></td>
</tr>
<tr>
<td>Product Activation</td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
</tr>
</tbody>
</table>

WARNING!

REBOOT is a critical action, all unsaved changes will be lost. Are you sure you want to reboot the device now?

Reboot now

Hardware Reset: Kartenreset inklusiver aller Hardwarekomponenten

<table>
<thead>
<tr>
<th>Device Info</th>
<th>Hardware Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Info</td>
<td></td>
</tr>
<tr>
<td>Factory Defaults</td>
<td></td>
</tr>
<tr>
<td>Custom Defaults</td>
<td></td>
</tr>
<tr>
<td>Reboot Device</td>
<td></td>
</tr>
<tr>
<td>Hardware Reset</td>
<td></td>
</tr>
<tr>
<td>Image Update</td>
<td></td>
</tr>
<tr>
<td>NTP Firmware Update</td>
<td></td>
</tr>
<tr>
<td>Upload Certificate</td>
<td></td>
</tr>
<tr>
<td>Customized Security Banner</td>
<td></td>
</tr>
<tr>
<td>Minute Pulse (PPM)</td>
<td></td>
</tr>
<tr>
<td>Product Activation</td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
</tr>
</tbody>
</table>

WARNING!

HARDWARE RESET is a critical action, synchronization will be lost. Are you sure that you want to perform the reset now?

Perform Reset now

Alle nicht mit "Save" gespeicherten Einstellungen gehen mit dem Reboot / Hardware Reset verloren (siehe Kapitel 6.2.3 Eingeben oder Ändern eines Wertes).

Im Weiteren wird der auf der Karte implementierte NTP Service neu gestartet, was zu einer erneuten Einregelungsphase mit dem Verlust der aktuell erreichten Stabilität und Genauigkeit führt.

Die Anmeldung erfolgt als Master Benutzer laut Beschreibung im Kapitel 6.2.1 LOGIN und LOGOUT als Benutzer

Mit Drücken des "Reboot now" oder "Perform Reset now" Knopf wird der Neustart ausgelöst.
6.3.5.6 Image Update & H8 Firmware Update

Patches und Fehlerbehebungen werden für die einzelnen Karten mittels Updates zur Verfügung gestellt.

Sowohl das Embedded-Image als auch die H8-Firmware können ausschließlich über die Webschnittstelle in die Karte eingespielt werden (Anmeldung als ‘master’ Benutzer erforderlich). Siehe auch Kapitel 2.4 Firmware-Update.

Folgende Punkte sind für ein Update zu beachten:

- Nur erfahrene Anwender oder geschultes technisches Personal sollten nach der Kontrolle aller notwendigen Vorbedingungen ein Kartenumdate durchführen.
- Wichtig: ein fehlerhaftes Update oder ein fehlerhafter Updateversuch erfordert unter Umständen, die Karte für eine kostenpflichtige Instandsetzung ins Werk zurück zu senden.
- Ist das vorliegende Update für Ihre Karte geeignet? Bei Unklarheiten ist der Support der Firma hopf zu kontaktieren.
- Zur Gewährleistung eines korrekten Updates muss im verwendeten Internet-Browser die Funktion "Neue Version der gespeicherten Seite" auf "Bei jedem Zugriff auf die Seite" eingestellt sein.
- Während des Updatevorganges darf das Gerät weder abgeschaltet noch ein Speichern der Einstellungen auf Flash vorgenommen werden!
- Updates werden immer als Software SETs vollzogen. Das heißt H8 Firmware-Update + Image-Update. Es ist zwingend erforderlich (wenn nicht extra anders in dem SET definiert) erst das H8 Firmware-Update und anschließend das Image-Update zu vollziehen.
- Für das Update die Punkte in Kapitel 2.4 Firmware-Update. beachten.

Zur Durchführung eines Updates ist der Name sowie der Ordner, in dem sich das Update / Firmware Image befindet, in das Textfeld einzutragen. Alternativ dazu kann die Datei per Auswahl durch Drücken der "Browse" (Durchsuchen) Schaltfläche geöffnet werden.

Korrekte Firmware- und Imagebezeichnungen sind zum Beispiel:

\[8029_7273_128_v0201.mot\]

für die H8 Firmware (Updatedauer ca. 1-1,5 Minuten)

\[upgrade_8029-SERI_gen_rel_v0700.img\]

oder \[upgrade_8029-NAND_gen_rel_v0700.img\]

für das Embedded-Image (Updatedauer ca. 2-3 Minuten)
6.3.5.6.1 Auswahl Image-Update

ACHTUNG
Wichtiger Hinweis zur Identifizierung des benötigten Image-Updates!
Für die Auswahl des korrekten Image-Updates muss zwingend die hier
rot markierte Ziffer von der Seriennummer überprüft werden!

Benötigte ZIP-Datei für das Image-Update:

Rot markierte Ziffer = 1

hopf7273-SERI_SET-v07xx.zip

Inhalt der ZIP-Datei:
- 8029_7273_128_v02xx.mot
- readme_7237-SERI.txt
- release-notes_7273-SERI.html
- upgrade_8029-SERI_gen_rel_v07xx.img

Rot markierte Ziffer = 4

hopf7273-NAND_SET-v07xx.zip

Inhalt der ZIP-Datei:
- 8029_7273_128_v02xx.mot
- readme_7273-NAND.txt
- release-notes_7273-NAND.html
- upgrade_8029-NAND_gen_rel_v07xx.img
### 6.3.5.6.2 Installation Image-Update

Der Update Prozess wird durch Drücken der "Update now" Schaltfläche gestartet. Bei erfolgreicher Übertragung und Überprüfung der Checksumme wird das Update installiert und eine Erfolgsseite mit der Anzahl der Bytes, die übertragen und installiert wurden, angezeigt.

<table>
<thead>
<tr>
<th>Device</th>
<th>H8 Firmware Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Info</td>
<td>WARNING!</td>
</tr>
<tr>
<td>Hardware Info</td>
<td>H8 Firmware UPDATE is a critical action. Please ensure not to switch off power during upload!</td>
</tr>
<tr>
<td>Factory Defaults</td>
<td>Device will be rebooted automatically after update!</td>
</tr>
<tr>
<td>Custom Defaults</td>
<td>Update file:</td>
</tr>
<tr>
<td>Reboot Device</td>
<td>Durchsuchen...</td>
</tr>
<tr>
<td>Hardware Reset</td>
<td>Upload now</td>
</tr>
<tr>
<td>Image Update</td>
<td></td>
</tr>
<tr>
<td>H8 Firmware Update</td>
<td></td>
</tr>
<tr>
<td>Upload Certificate</td>
<td></td>
</tr>
<tr>
<td>Customized Security</td>
<td></td>
</tr>
<tr>
<td>Banner</td>
<td></td>
</tr>
<tr>
<td>Minute Pulse (PPM)</td>
<td></td>
</tr>
<tr>
<td>Product Activation</td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
</tr>
</tbody>
</table>

Nach dem H8-Firmwareupdate erfolgt automatisch ein Restart der Karte mit der neuen H8-Firmware.

Das Image Update unterscheidet sich lediglich in der Vorgangsweise für den Neustart der Karte.

<table>
<thead>
<tr>
<th>Device</th>
<th>Image Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Info</td>
<td>WARNING!</td>
</tr>
<tr>
<td>Hardware Info</td>
<td>IMAGE UPDATE is a critical action. Please ensure not to switch off power during update!</td>
</tr>
<tr>
<td>Factory Defaults</td>
<td>Update file:</td>
</tr>
<tr>
<td>Custom Defaults</td>
<td>Durchsuchen...</td>
</tr>
<tr>
<td>Reboot Device</td>
<td>Update now</td>
</tr>
<tr>
<td>Hardware Reset</td>
<td></td>
</tr>
<tr>
<td>Image Update</td>
<td></td>
</tr>
<tr>
<td>H8 Firmware Update</td>
<td></td>
</tr>
<tr>
<td>Upload Certificate</td>
<td></td>
</tr>
<tr>
<td>Customized Security</td>
<td></td>
</tr>
<tr>
<td>Banner</td>
<td></td>
</tr>
<tr>
<td>Minute Pulse (PPM)</td>
<td></td>
</tr>
<tr>
<td>Product Activation</td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
</tr>
</tbody>
</table>

Nach dem Image-Update fordert ein Fenster im WebGUI zur Bestätigung des Reboots der Karte auf.
6.3.5.7 Upload von Anwender SSL-Server-Zertifikat (Upload Certificate)
Hiermit besteht die Möglichkeit die https-Verbindungen zur Karte 7273(RC) mit einem vom Anwender zur Verfügung gestellten SSL-Server-Zertifikat zu verschlüsseln.

6.3.5.8 Spezieller Anwender-Sicherheitshinweis (Customized Security Banner)
Hier können vom Anwender spezielle Sicherheitsinformationen eingetragen werden, die im General-Tab anzuzeigen sind.

Die Sicherheitsinformation kann als 'unformatierter' Text aber auch im HTML-Format beschrieben werden. Hierfür stehen 2000 Zeichen zur Verfügung, die ausfallsicher in der Karte 7273(RC) gespeichert werden.


Zum Entfernen des "Customized Security Banner" ist der eingetragene Text wieder vollständig mit anschließender Speicherung zu löschen.
### 6.3.5.9 Option FG7273/PPM: Minutenimpulslänge (Minute pulse (PPM))

Mit der Option FG7273/PPM befindet sich in der Frontblende der Karte 7273(BC) eine 3-polige Schraubklemme über welche ein potentialgetrennter Minutenimpuls (high aktiv) mit einem Spannungswert von +12V DC abgegriffen werden kann. Technische Daten siehe [Kapitel 8 Technische Daten](#).

Die Ausgabe des Minutenimpulses erfolgt über eine "open collector" Stufe mit einer Strombegrenzung. Für zusätzliche Informationen siehe [Kapitel 1.3.1.7 Optional: aktiver 12V DC PPM (Minutenimpuls)](#).

#### Dieser Minutenimpuls ist kompatibel zum Minutenimpuls der hopf Karte 7270/7271 (sowohl bei den elektrischen Eigenschaften als auch bei den einstellbaren Parametern).

#### Der Menüpunkt Minute Pulse (PPM) wird nur im WebGUI angezeigt, wenn die Karte auch über die Funktion verfügt.

#### Sowohl für die Karte 7273 als auch für die Karte 7273RC ist die Option FG7273/PPM lieferbar. Eine Nachrüstung dieser Option ist kundenseitig nicht möglich.

Die Impulslänge ist in 4 Schritten einstellbar.

#### Impulslänge für Minutenimpuls (high aktiv)

<table>
<thead>
<tr>
<th>Impulslänge</th>
<th>10 msec</th>
<th>100 msec</th>
<th>500 msec</th>
<th>1000 msec</th>
</tr>
</thead>
</table>

Konnfiguration des Minute Pulse (PPM): 10 m sec, 100 m sec, 500 m sec, 1000 m sec.
6.3.5.10 Produkt-Aktivierung

Für die Freischaltung optionaler Funktionen wie z.B. "Netzfrequenzausgabe via Ethernet" ist ein spezieller Aktivierungsschlüssel notwendig, der von der Firma hopf Elektronik GmbH angefordert werden kann. Jeder Aktivierungsschlüssel ist an eine bestimmte Karte gebunden und kann somit nicht für mehrere Karten verwendet werden.

**Overview**

Auflistung der optionalen Funktionen mit aktuellem Freischaltstatus und dem gespeicherten Aktivierung-Schlüssel (Activation Key).

**Activate Feature**


Wenn die Aktivierung erfolgreich war, wird die neue Funktion in der Übersicht (Overview) mit dem Status "Active" aufgelistet und kann sofort verwendet werden.

**Key Reset**

Löscht alle Aktivierungs-Schlüssel und legt alle optionalen Features in den Status "inaktiv". Alle anderen nicht optionalen Funktionen sind nach der Durchführung des Key-Reset weiter verfügbar. Wenn eine optionale Funktion erneut aktiviert wird, wird die letzte gespeicherte Konfiguration für diese Funktion wiederhergestellt.
6.3.5.11 Diagnose Funktion

Bei aktivierten "Status Messages" erfolgt die Ausgabe als SYSLOG Meldung. Diese Funktion sollte nur im Problemfall und mit Rücksprache des hopf Supports verwendet/aktiviert werden.
6.3.5.12 Passwörter (Master/Device)

Bei Passwörtern wird zwischen Groß- und Kleinschreibung unterschieden. Grundsätzlich sind alle alphanumerischen Zeichen so wie folgende Zeichen in Passwörtern erlaubt:

[]()*_-!$%&/=?

(Siehe auch Kapitel 6.2.1 LOGIN und LOGOUT als Benutzer)
6.3.5.13 Download von Konfigurationen / SNMP MIB

Um bestimmte Konfigurationsdateien über die Webschnittstelle herunterladen zu können, ist es erforderlich, sich als "master" Benutzer angemeldet zu haben.

Die von der Karte geladene Datei System Configuration wird ausschließlich für Supportzwecke verwendet und kann nicht zum Setzen der Setting in die Karte zurückgeladen werden.

Vor einem Download der Datei System Configuration ist es zwingend erforderlich den Button [Refresh System Configuration] zu betätigen.

Die "private hopf enterprise MIB" steht ebenfalls über WebGUI in diesem Bereich zur Verfügung.
7 SSH- und Telnet-Basiskonfiguration

Über SSH oder Telnet ist nur eine Basiskonfiguration möglich. Die vollständige Konfiguration der Karte 7273(RC) erfolgt nur über den WebGUI.

Die Verwendung von SSH (Port 22) oder von Telnet (Port 23) ist genauso einfach wie über den WebGUI. Beide Protokolle verwenden die gleiche Benutzerschnittstelle und Menüstruktur.

Die Benutzer Names und Passwörter sind gleich wie im WebGUI und werden synchron gehalten. (siehe Kapitel 6.3.5.12 Passwörter (Master/Device)).

SSH erlaubt aus Sicherheitsgründen keine leeren Passwörter.

Für die Verwendung von Telnet oder SSH ist der entsprechende Service zu aktivieren (siehe Kapitel 0 Management (Management-Protocols – HTTP, SNMP etc.))

Die Navigation durch das Menü erfolgt durch Eingabe der jeweiligen Zahl, welche vor der Menüoption angeführt wird (wie im obigen Bild ersichtlich).
## Technische Daten

### Allgemeine technische Daten der Karte 7273(RC).

<table>
<thead>
<tr>
<th>Aufbau</th>
<th>Europakarte 160 x 100 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spannungsversorgung</td>
<td>interne Systemspannung Vcc 5V DC ± 5% via Systembus</td>
</tr>
</tbody>
</table>

### Umgebungsbedingungen

<table>
<thead>
<tr>
<th>Temperaturbereich:</th>
<th>Betrieb: 0°C bis +40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagerung:</td>
<td>-20°C bis +75°C</td>
</tr>
<tr>
<td>Feuchtigkeit:</td>
<td>max. 95%, nicht betaueud</td>
</tr>
</tbody>
</table>

### GPS-System - Accuracy

<table>
<thead>
<tr>
<th>Lambda &lt; 15ms</th>
<th>Stability &lt; 0.2ppm</th>
<th>HIGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda &lt; 15ms</td>
<td>Stability &gt;= 0.2ppm und &lt;= 2ppm, Offset &lt; 1ms</td>
<td>HIGH</td>
</tr>
<tr>
<td>Lambda &lt; 15ms</td>
<td>Stability &gt; 2ppm oder Offset &gt;= 1ms</td>
<td>MEDIUM</td>
</tr>
</tbody>
</table>

### DCF77-System - Accuracy

<table>
<thead>
<tr>
<th>Lambda &lt; 15ms</th>
<th>Stability &lt; 0.6ppm</th>
<th>HIGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda &lt; 15ms</td>
<td>Stability &gt;= 0.6ppm und &lt;= 2ppm, Offset &lt; 2ms</td>
<td>HIGH</td>
</tr>
<tr>
<td>Lambda &lt; 15ms</td>
<td>Stability &gt; 2ppm oder Offset &gt;= 2ms</td>
<td>MEDIUM</td>
</tr>
</tbody>
</table>

### Zeit Protokolle

- NTPv4 Server
- NTP Broadcast mode
- NTP Multicast mode
- NTP Client für weitere NTP Server (Redundanz)
- SNTP Server
- NTP Symmetric Key Kodierung
- NTP Autokey Kodierung
- NTP Access Restrictions
- PPS time source
- RFC-867 DAYTIME Server
- RFC-868 TIME Server
- SINEC H1 Uhrzeittelegramm

### TCP/IP Netzwerk Protokolle

- HTTP/HTTPS
- DHCP
- Telnet
- SSH
- SNMPv2 / SNMPv3
- NTP (inkl. SNTP)
- SINEC H1 Uhrzeittelegramm

### Konfigurationskanäle

- HTTP/HTTPS-WebGUI (Browser Based)
- Telnet
- SSH
- **hopf** Basis System über Tastatur und Anzeige bzw. **hmc** Remote Zugriff
- **hmc** Network Configuration Assistent
### Leistungsaufnahme

| Normal Betrieb | Typisch: 230 mA (max. 300 mA) |
| Bootphase      | Typisch: 230 mA (max. 300 mA) |

### LAN

| Netzwerkverbindung | Über ein LAN-Kabel mit RJ45-Stecker (empfohlener Leitungstyp CAT5 oder besser). |
| Request pro Sekunde | max. 1000 Requests |
| Anzahl der anschließbaren Clients | theoretisch unbegrenzt |
| Netzwerkinterface ETH0 | 10/100 Base-T |
| Ethernet-Kompatibilität | Version 2.0 / IEEE 802.3 |
| Isolationsspannung (Netzwerk- zur System-Seite) | 1500 Vrms |

### MTBF

| MTBF | > 900.000 Std. |

### Karte 7273 mit Option FG7273/PPM (Ausgabe Minutenimpuls)

<table>
<thead>
<tr>
<th>Minutenimpuls</th>
<th>12V DC, potentialgetrennt über eine 'Open Kollektor Stufe'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Als Stromquelle</td>
<td>Typisch: 20mA (max. 30 mA)</td>
</tr>
<tr>
<td></td>
<td>Der Ausgang sollte mit Rl. &lt; 600 Ohm belastet werden, da ansonsten die Flankensteilheit zu gering sein kann.</td>
</tr>
<tr>
<td>Ausgabe Logik</td>
<td>high aktiv</td>
</tr>
<tr>
<td>Aktive Ausgabespannung</td>
<td>12V DC, max. 100mA, potentialgetrennt</td>
</tr>
<tr>
<td>Isolationsspannung</td>
<td>min. 1000V DC</td>
</tr>
</tbody>
</table>
## 9 Werkseinstellungen / Factory-Defaults Karte 7273(RC)

Der Auslieferungszustand der Karte 7273(RC) entspricht beim Einsatz in GPS Systemen den Factory-Defaults. Bei DCF77-Systemen wird bei Auslieferung die Funktion "NTP / General / Sync. Source" auf "DCF77" konfiguriert.

![Warning]
Beim Einsatz der Karte in DCF77 Systemen ist nach einem Factory Default die Einstellung für "NTP / General / Sync. Source" wieder auf "DCF77" zu konfigurieren.

### NTP Server Configuration

<table>
<thead>
<tr>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync. Source</td>
<td>DCF77</td>
</tr>
</tbody>
</table>

### 9.1 Netzwerk

<table>
<thead>
<tr>
<th>Host/Nameservice</th>
<th>Einstellung</th>
<th>Darstellung WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>hopf7273</td>
<td>hopf7273</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>keine Änderung</td>
<td>---</td>
</tr>
<tr>
<td>DNS 1</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>DNS 2</td>
<td>leer</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network Interface ETH0</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Custom Hardware Address (MAC)</td>
<td>deaktiviert</td>
<td>disabled</td>
</tr>
<tr>
<td>Custom Hardware Address (MAC)</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>DHCP</td>
<td>aktiviert</td>
<td>enabled</td>
</tr>
<tr>
<td>IP</td>
<td>keine Änderung</td>
<td>keine Änderung</td>
</tr>
<tr>
<td>Netmask</td>
<td>keine Änderung</td>
<td>keine Änderung</td>
</tr>
<tr>
<td>Operation mode</td>
<td>Auto negotiate</td>
<td>Auto negotiate</td>
</tr>
<tr>
<td>MTU</td>
<td>1356</td>
<td>1356</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Routing</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Defined Routes</td>
<td>leer</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>aktiviert</td>
<td>enabled</td>
</tr>
<tr>
<td>HTTPS</td>
<td>deaktiviert</td>
<td>disabled</td>
</tr>
<tr>
<td>SSH</td>
<td>aktiviert</td>
<td>enabled</td>
</tr>
<tr>
<td>TELNET</td>
<td>deaktiviert</td>
<td>disabled</td>
</tr>
<tr>
<td>SNMP</td>
<td>deaktiviert</td>
<td>disabled</td>
</tr>
<tr>
<td>System Location</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>System Contact</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>Read Only Community</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>Read/Write Community</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>Security Name</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>Access Rights</td>
<td>Readonly</td>
<td>Readonly</td>
</tr>
<tr>
<td>Authentication Protocol</td>
<td>MD5</td>
<td>MD5</td>
</tr>
<tr>
<td>Authentication Passphrase</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>Privacy Protocol</td>
<td>DES</td>
<td>DES</td>
</tr>
<tr>
<td>Privacy Passphrase</td>
<td>leer</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Protocols</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP</td>
<td>aktiviert</td>
<td>enabled</td>
</tr>
<tr>
<td>DAYTIME</td>
<td>deaktiviert</td>
<td>disabled</td>
</tr>
<tr>
<td>TIME</td>
<td>deaktiviert</td>
<td>disabled</td>
</tr>
<tr>
<td>SINEC H1 time datagram</td>
<td>deaktiviert</td>
<td>disabled</td>
</tr>
</tbody>
</table>

### SINEC H1 time datagram

<table>
<thead>
<tr>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send Interval</td>
<td>sekundlich</td>
</tr>
<tr>
<td>Timebase</td>
<td>UTC</td>
</tr>
<tr>
<td>Destination MAC Address</td>
<td>09:00:06:03:FF:EF</td>
</tr>
<tr>
<td>Minimum Accuracy</td>
<td>LOW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIP-Switch DS1 SW6</th>
<th>Einstellung</th>
<th>Darstellung WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sendzeitpunkt</td>
<td>SINEC H1 Uhrzeittelegramm</td>
<td>off (sekundengleich)</td>
</tr>
</tbody>
</table>

NTP/SINEC H1 LAN Karte 7273 und 7273RC - V07.00
### 9.2 NTP

<table>
<thead>
<tr>
<th>NTP Server Configuration</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync. Source</td>
<td>GPS</td>
<td>GPS</td>
</tr>
<tr>
<td>NTP to Syslog</td>
<td>deaktiviert</td>
<td>disabled</td>
</tr>
<tr>
<td>Switch to specific stratum</td>
<td>deaktiviert</td>
<td>disabled</td>
</tr>
<tr>
<td>Stratum in crystal operation</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>Broadcast address</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>Authentication</td>
<td>deaktiviert</td>
<td>none</td>
</tr>
<tr>
<td>Key ID</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>Additional NTP Servers</td>
<td>leer</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NTP Extended Configuration</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limitation of Liability</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>Block Output when Stratum Unspecified</td>
<td>deaktiviert</td>
<td>disabled</td>
</tr>
<tr>
<td>Timebase (default: UTC)</td>
<td>UTC</td>
<td>UTC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NTP Access Restrictions</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Restrictions</td>
<td>deaktiviert</td>
<td>default nomodify</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NTP Symmetric Keys</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request Key</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>Control Key</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>Symmetric Keys</td>
<td>leer</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NTP Autokey</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autokey</td>
<td>deaktiviert</td>
<td>disabled</td>
</tr>
<tr>
<td>Password</td>
<td>leer</td>
<td>---</td>
</tr>
</tbody>
</table>

### 9.3 ALARM

<table>
<thead>
<tr>
<th>Syslog Configuration</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syslog</td>
<td>deaktiviert</td>
<td>disabled</td>
</tr>
<tr>
<td>Server Name</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>Alarm Level</td>
<td>deaktiviert</td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-mail Configuration</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail Notifications</td>
<td>deaktiviert</td>
<td>disabled</td>
</tr>
<tr>
<td>SMTP Server</td>
<td>leer</td>
<td>---</td>
</tr>
<tr>
<td>Sender Address</td>
<td>leer</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-mail Addresses</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>leer</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNMP Traps Configuration</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP Traps</td>
<td>deaktiviert</td>
<td>disabled</td>
</tr>
<tr>
<td>Alarm Level</td>
<td>deaktiviert</td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alarm Messages</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarms</td>
<td>alle deaktiviert</td>
<td>all none</td>
</tr>
</tbody>
</table>

### 9.4 DEVICE

<table>
<thead>
<tr>
<th>User Passwörter</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Passwort</td>
<td>master</td>
<td>---</td>
</tr>
<tr>
<td>Device Passwort</td>
<td>device</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnostik</th>
<th>Einstellung</th>
<th>WebGUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Time Diagnostics</td>
<td>deaktiviert</td>
<td>Disabled</td>
</tr>
</tbody>
</table>


10 Glossar und Abkürzungen

10.1 NTP spezifische Termini

<table>
<thead>
<tr>
<th>Stabilität - Stability</th>
<th>Die durchschnittliche Frequenzstabilität des Uhrensystems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genauigkeit - Accuracy</td>
<td>Spezifiziert die Genauigkeit im Vergleich zu anderen Uhren.</td>
</tr>
<tr>
<td>Präzision der Uhr - Precision of a clock</td>
<td>Spezifiziert wie präzise die Stabilität und Genauigkeit des Uhrensystems eingehalten werden kann.</td>
</tr>
<tr>
<td>Versatz - Offset</td>
<td>Der Wert stellt die Zeitdifferenz zwischen zwei Uhren dar. Dieser Wert repräsentiert den Versatz mit dem die lokale Uhr zu adjustieren wäre um sie Deckungsgleich mit der Referenzuhr zu halten.</td>
</tr>
<tr>
<td>Uhrregelwert - Clock skew</td>
<td>Die Frequenzdifferenz zwischen zwei Uhren (erste Ableitung des Versatzes über die Zeit).</td>
</tr>
<tr>
<td>Drift</td>
<td>Reale Uhren variieren in der Frequenzdifferenz (zweite Ableitung des Versatzes über die Zeit). Diese Variation wird Drift genannt.</td>
</tr>
<tr>
<td>Rundumlaufverzögerung einer NTP-Message zur Referenz und zurück - Roundtrip delay</td>
<td></td>
</tr>
<tr>
<td>Stellt den maximalen Fehler der lokalen Uhr relativ zur Referenzuhr dar - Dispersion</td>
<td></td>
</tr>
<tr>
<td>Der geschätzte Zeitfehler der Systemuhr gemessen als durchschnittlicher Exponentialwert der Zeitdifferenz - Jitter</td>
<td></td>
</tr>
</tbody>
</table>

10.2 Tally Codes (NTP spezifisch)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>space</td>
<td>Zurückgewiesener Peer – entweder ist der Peer nicht erreichbar oder seine synch. Distanz ist zu groß.</td>
</tr>
<tr>
<td>reject</td>
<td>Der Peer wurde durch den Intersektion-Algorithmus von NTP als falscher Zeitlieferant ausgesondert.</td>
</tr>
<tr>
<td>x</td>
<td>Der Peer wurde durch den Intersektion-Algorithmus von NTP als falscher Zeitlieferant ausgesondert.</td>
</tr>
<tr>
<td>falsetick</td>
<td>Der Peer wurde durch den Sortier-Algorithmus von NTP (betrifft die ersten 10 Peers) als schwacher Zeitlieferant anhand der synch. Distanz ausgesondert.</td>
</tr>
<tr>
<td>excess</td>
<td>Der Peer wurde durch den Sortier-Algorithmus von NTP als schwacher Zeitlieferant anhand der synch. Distanz ausgesondert.</td>
</tr>
<tr>
<td>-</td>
<td>Der Peer wurde durch den Clustering-Algorithmus von NTP als Außenseiter ausgesondert.</td>
</tr>
<tr>
<td>outlyer</td>
<td>Der Peer wurde durch den Clustering-Algorithmus von NTP als Außenseiter ausgesondert.</td>
</tr>
<tr>
<td>+</td>
<td>Der Peer wurde als Kandidat für den Combining-Algorithmus von NTP ausgewählt.</td>
</tr>
<tr>
<td>candidate</td>
<td>Der Peer wurde als Kandidat für den Combining-Algorithmus von NTP ausgewählt.</td>
</tr>
<tr>
<td>#</td>
<td>Der Peer ist von guter Qualität aber nicht unter den ersten Sechs anhand der Synch. Distanz vom Sortier-Algorithmus ausgewählten Peers.</td>
</tr>
<tr>
<td>selected</td>
<td>Der Peer ist von guter Qualität aber nicht unter den ersten Sechs anhand der Synch. Distanz vom Sortier-Algorithmus ausgewählten Peers.</td>
</tr>
<tr>
<td>*</td>
<td>Der Peer wurde als Systempeer ausgewählt. Seine Eigenschaften werden im Basis-System übernommen.</td>
</tr>
</tbody>
</table>
10.2.1 Zeitspezifische Ausdrücke

**UTC**
Die UTC-Zeit (Universal Time Coordinated) wurde angelehnt an die Definition der Greenwich Mean Time (GMT) vom Nullmeridian. Während GMT astrologischen Berechnungen folgt, orientiert sich UTC mit Stabilität und Genauigkeit am Cäsiumnormal. Um diese Abweichung zu füllen, wurde die Schaltsekunde definiert.

**Zeitzone – Timezone**
Die Erdkugel wurde ursprünglich in 24 Längssegmente oder auch Zeitzonen eingeteilt. Heute gibt es jedoch mehrere Zeitzonen die teilweise spezifisch für nur einzelne Länder gelten.
Mit den Zeitzonen wurde berücksichtigt, dass der lokale Tag und das Sonnenlicht zu unterschiedlichen Zeiten auf die einzelnen Zeitzonen treffen.
Der Nullmeridian verläuft durch die Britische Stadt Greenwich.

**Differenzzeit**
Differenzzeit ist die Differenz zwischen UTC und der, in der jeweiligen Zeitzone gültigen, Standardzeit (Winterzeit).
Sie wird durch die jeweils lokalen Zeitzone festgelegt.

**lokale Standardzeit (Winterzeit) – local Standard time**
Standardzeit = UTC + Differenzzeit
Die Differenzzeit wird durch die lokale Zeitzone und die lokalen politischen Bestimmungen festgelegt.

**Sommerzeit – Daylight saving time**
Der Sommerzeitoffset beträgt +01:00h.
Die Sommerzeit wurde eingeführt, um den Energiebedarf einiger Länder zu reduzieren. Dabei wird eine Stunde zur Standardzeit während der Sommermonate zugerechnet.

**Lokalzeit – Local Time**
Lokal Zeit = Standardzeit, soweit in der jeweiligen Zeitzone vorhanden mit Sommerzeit/-Winterzeitumschaltung.

**Schaltsekunde – leap second**
Eine Schaltsekunde ist eine in die offizielle Zeit (UTC) zusätzlich eingefügte Sekunde, um sie bei Bedarf mit der Mittleren Sonnenzeit (=GMT) zu synchronisieren. Schaltsekunden werden international vom International Earth Rotation and Reference Systems Service (IERS) festgelegt.
## 10.3 Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition/Aufzählung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DST</td>
<td>Daylight Saving Time / Sommerzeit</td>
</tr>
<tr>
<td>ETH0</td>
<td>Ethernet Interface 0 / Netzwerk Schnittstelle 0</td>
</tr>
<tr>
<td>ETH1</td>
<td>Ethernet Interface 1 / Netzwerk Schnittstelle 1</td>
</tr>
<tr>
<td>FW</td>
<td>Firmware / Schnittstelle</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System / Globales Positionssystem</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware / Hardware</td>
</tr>
<tr>
<td>IF</td>
<td>Interface / Schnittstelle</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol / Internet Protokoll</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network / Lokales Netzwerk</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode / Leuchtdiode</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol / Netzwerk Zeit Protokoll</td>
</tr>
<tr>
<td>NE</td>
<td>Network Element / Gerät in einem Telekommunikationsnetz</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer / Originalgerätehersteller</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System / Betriebssystem</td>
</tr>
<tr>
<td>RFC</td>
<td>Request for Comments / technische und organisatorische Dokumente</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol (handled by more than 60 RFCs)</td>
</tr>
<tr>
<td>SNTP</td>
<td>Simple Network Time Protocol / Netzwerk Zeit Protokoll</td>
</tr>
<tr>
<td>S, STD</td>
<td>Standard Time / Winterzeit / Standardzeit</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol / Netzwerkprotokoll [<a href="http://de.wikipedia.org/wiki/U-">http://de.wikipedia.org/wiki/U-</a></td>
</tr>
<tr>
<td></td>
<td>ser_Datagram_Protocol]</td>
</tr>
<tr>
<td>ToD</td>
<td>Time of Day / Tageszeit</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol / Netzwerkprotokoll [<a href="http://de.wikipedia.org/wiki/U-">http://de.wikipedia.org/wiki/U-</a></td>
</tr>
<tr>
<td></td>
<td>ser_Datagram_Protocol]</td>
</tr>
<tr>
<td>UTC</td>
<td>Universal Time Coordinated / Koordinierte Weltzeit</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network / großräumiges Netz</td>
</tr>
<tr>
<td>msec</td>
<td>millisecond (10^-3 seconds) / Millisekunde (10^-3 Sekunden)</td>
</tr>
<tr>
<td>µsec</td>
<td>microsecond (10^-6 seconds) / Mikrosekunde (10^-6 Sekunden)</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million (10^-6) / Teile pro Million (10^-6)</td>
</tr>
</tbody>
</table>
10.4 Definitionen

Erläuterung der in diesem Dokument verwendeten Begriffe.

10.4.1 DHCP (Dynamic Host Configuration Protocol)


DHCP ist eine Erweiterung des BOOTP-Protokolls. Wenn ein DHCP-Server in ihrem Netzwerk vorhanden und DHCP aktiviert ist, wird automatisch eine gültige IP-Adresse zugewiesen.

Für weitere Informationen siehe RFC 2131 Dynamic Host Configuration Protocol

10.4.2 NTP (Network Time Protocol)


NTPv4 kann die lokale Zeit eines Systems über das öffentliche Internet mit einer Genauigkeit von einigen 10 Millisekunden halten, in lokalen Netzwerken sind unter idealen Bedingungen sogar Genauigkeiten von 500 Mikrosekunden und besser möglich. Bei einem hinreichend stabilen und lokalen Taktgeber (Ofenstabilisierter Quarz, Rubidium-Oszillator, etc.) lässt sich unter Verwendung der Kernel-PLL (siehe oben) der Phasenfehler zwischen Referenzzeitgeber und lokaler Uhr bis in die Größenordnung von wenigen zig Mikrosekunden reduzieren. NTP gleicht automatisch die Drift der lokalen Uhr aus.

NTP kann über Firewalls eingesetzt werden und bringt eine Reihe von Securityfunktionen mit.

Für weitere Informationen siehe RFC 5905.
10.4.3 **SNMP (Simple Network Management Protocol)**


- Überwachung von Netzwerkkomponenten.
- Fernsteuerung und Fernkonfiguration von Netzwerkkomponenten.
- Fehlererkennung und Fehlerbenachrichtigung.

Durch seine Einfachheit hat sich SNMP zum Standard entwickelt, der von den meisten Managementprogrammen unterstützt wird. SNMP Versionen 1 und 2c bieten fast keine Sicherheitsmechanismen. In der aktuellen Version 3 wurden die Sicherheitsmechanismen deutlich ausgebaut.

Mit Hilfe der Beschreibungdateien, sogenannten MIBs (Management Information Base), sind die Managementprogramme in der Lage, den hierarchischen Aufbau der Daten jedes beliebigen SNMP-Agenten darzustellen und Werte von diesem anzufordern. Neben den in den RFCs definierten MIBs kann jeder Hersteller von Soft- oder Hardware eigene MIBs, so genannte private MIBs, definieren, die die speziellen Eigenschaften seines Produktes wiedergeben.

10.4.4 **TCP/IP (Transmission Control Protocol / Internet Protocol)**

TCP und IP werden üblicherweise gemeinsam benutzt und somit hat sich der Terminus TCP/IP als Standard für beide Protokolle eingebürgert.

IP basiert auf Netzwerkschicht 3 (Schicht 3) im OSI Schichtenmodell während TCP auf Schicht 4, der Transportschicht, basiert. Mit anderen Worten, der Ausdruck TCP/IP bezeichnet Netzwerkverbindung, bei der der TCP Transportmechanismus verwendet wird, um Daten über IP Netze zu verteilen oder zu liefern. Als einfaches Beispiel: Web Browser benutzen TCP/IP, um mit Webservern zu kommunizieren.
10.5 Syslogmeldungen
Beschreibung der unter Alarm Nachrichten konfigurierbaren Syslogmeldungen der Karte 7273(RC). Alle weiteren Syslogmeldungen die durch betriebssystem-interne Prozesse (z.B. NTP, Syslog-Deamon, ...) generiert werden, sind hier nicht beschrieben.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Meldung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>NTP-Genauigkeit wechselt -</td>
<td>LOW, MEDIUM, HIGH</td>
</tr>
<tr>
<td>G</td>
<td>Synchronisationsstatus wechselt - Synchstatus changed from %1 to %2</td>
<td>I, C, r, R</td>
</tr>
<tr>
<td>G</td>
<td>NTP System peer wechselt - Systempeer changed from %1 to %2</td>
<td>HOPF_S(0) hopf-System</td>
</tr>
<tr>
<td>G</td>
<td>NTP Stratum wechselt - Stratum changed from %1 to %2</td>
<td>0, 1, 2,... 16</td>
</tr>
<tr>
<td>E</td>
<td>Firmwareupdate wird ausgeführt - Firmware update performed</td>
<td>*</td>
</tr>
<tr>
<td>E</td>
<td>Ankündigung Schaltsekunde für nächsten Stundenwechsel -</td>
<td>*</td>
</tr>
<tr>
<td>E</td>
<td>Neustart durch Anwender wurde ausgelöst - Reboot by user has been</td>
<td>*</td>
</tr>
<tr>
<td>E</td>
<td>Änderungen der Konfiguration werden im Flash gespeichert - Changes</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>made in the configuration have been saved to flash disc</td>
<td></td>
</tr>
</tbody>
</table>

Meldungstyp ( E : Einzelmeldungen ; G : Gruppenmeldungen )

10.6 Genauigkeit & NTP Grundlagen

NTP basiert auf dem Internetprotokoll. Übertragungsverzögerungen und Übertragungsfehler sowie der Verlust von Datenpaketen kann zu unvorhersehbaren Genauigkeitswerten sowie Zeitsynchronisationseffekten führen.

Durch das NTP Protokoll ist weder die Genauigkeit bzw. die Richtigkeit der Zeitserver festgelegt oder gar garantiert.

Daher gilt für die Synchronisation via NTP nicht die gleiche QOS (Quality of Service) wie für die direkte Synchronisation mit GPS oder serieller Schnittstelle.

Vereinfacht gesprochen muss man mit Genauigkeitswerten zwischen 1msec und 1sec rechnen, abhängig von den Genauigkeiten der verwendeten Server.

Die Genauigkeit von IP-basierter Zeitsynchronisation hängt von folgenden Kriterien ab:
- Charakteristik und Genauigkeit des verwendeten Zeitservers / Zeitsignals
- Charakteristik des Sub-Netzwerkes
- Charakteristik und Qualität des Synchronisationsclients
- dem verwendeten Algorithmus
NTP besitzt viele Algorithmen, um mögliche Eigenschaften von IP-Netzwerken auszugleichen. Ebenso existieren Algorithmen, um den Offset zwischen Referenzzeitquelle und Lokaler Uhr auszugleichen.

Unter manchen Umständen ist es jedoch nicht möglich, eine algorithmische Lösung zur Verfügung zu stellen.

**Zum Beispiel:**

1. Zeitserver, die keine korrekte Zeit liefern, können nicht absolut erkannt werden. NTP besitzt nur die Möglichkeit, im Vergleich zu anderen Zeitsservern diesen als FALSETICKER zu markieren und nicht zu berücksichtigen. Dies bedeutet jedoch, dass wenn nur 2 Zeitserver konfiguriert sind, NTP keine Möglichkeit besitzt, die Richtigkeit der einzelnen Zeiten absolut festzustellen und den falschen eindeutig zu identifizieren.


3. Es liegt auf der Hand, dass die Genauigkeit der synchronisierten Zeit nicht höher sein kann als die Genauigkeitsauflösung der lokalen Uhr auf dem NTP-Server und dem NTP-Client.

Bezugnehmend auf die oben erwähnten Fehlerfälle ist der gelieferte Zeitversatz (*offset*) vom NTP maximal als günstigster Fall zu betrachten und keinesfalls als Wert mit allen möglichen berücksichtigten Fehlern.


Als Beispiel sei der Fall erwähnt, dass ein Netzwerk eine Verzögerung von 500msec hat und eine Genauigkeitsverschiebung (asynch.) von 50msec auftritt. Die synchronisierten Clients werden daher NIE Genauigkeitswerte von einer Millisekunde oder gar Mikrosekunden erreichen!

Die Accuracy Anzeige in der GENERAL-Registerkarte des WebGUI soll dem Benutzer helfen die Genauigkeit einschätzen zu können.
11 RFC Auflistung

- NTPv4 - Protocol and Algorithms Specification (RFC 5905)
- NTPv4 - Autokey Specification (RFC 5906)
- PPS API (RFC 2783)
- DHCP (RFC 2131)
- Time Protocol (RFC 868)
- Daytime Protocol (RFC 867)
- HTTP (RFC 2616)
- HTTPS (RFC 2818)
- SSH-2 (RFC 4250-4256, 4335, 4344, 4345, 4419, 4432, 4716, 5656)
- TELNET (RFC 854-861)
- SNMPv2 (RFC 1213, RFC1901-1908)
- SNMPv3 (RFC 3410-3418)
- SYSLOG (RFC 5424)
- SMTP (RFC 5321)
12 Auflistung der verwendeten Open-Source Pakete

Software von Drittherstellern

Der **hopf** Netzwerk Zeitserver 7273(RC) beinhaltet zahlreiche Softwarepakete, die unterschiedlichen Lizenzbedingungen unterliegen. Für den Fall, dass die Verwendung eines Softwarepakets dessen Lizenzbedingungen verletzen sollte, wird umgehend nach schriftlicher Mitteilung dafür gesorgt, dass die zu Grunde liegenden Lizenzbedingungen wieder eingehalten werden.

Sollten die einem spezifischen Softwarepaket zu Grunde liegenden Lizenzbedingungen es vorschreiben, dass der Quellcode zur Verfügung gestellt werden muss, wird auf Anfrage das Quellcode Paket elektronisch (Email, Download etc.) zur Verfügung gestellt.

Die nachfolgende Tabelle enthält alle verwendeten Softwarepakete mit den jeweils zu Grunde liegenden Lizenzbedingungen:

<table>
<thead>
<tr>
<th>Paketname</th>
<th>Version</th>
<th>Lizenz</th>
<th>Lizenzdetails</th>
<th>Patches</th>
</tr>
</thead>
<tbody>
<tr>
<td>boa</td>
<td>0.94.14rc21</td>
<td>GPL v1+</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>busybox</td>
<td>1.18.5</td>
<td>GPL v2</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>eeprog</td>
<td>0.7.6</td>
<td>GPL v2+</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>ethtool</td>
<td>2.6.39</td>
<td>GPL v2</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>i2c-tools</td>
<td>3.0.3</td>
<td>GPL v2</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>libatomic_ops</td>
<td>1.2</td>
<td>GPL v2</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>libdaemon</td>
<td>0.14</td>
<td>LGPL v2.1</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>libelf</td>
<td>0.8.12</td>
<td>LGPL v2</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>libevent</td>
<td>1.4.12</td>
<td>3-clause BSD</td>
<td><a href="http://libevent.org/LICENSE.txt">http://libevent.org/LICENSE.txt</a></td>
<td>nein</td>
</tr>
<tr>
<td>libgcrypt</td>
<td>1.5.0</td>
<td>GPL v2</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>libgpg-error</td>
<td>1.8</td>
<td>GPL v2</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>libsysfs</td>
<td>2.1.0</td>
<td>LGPL v2.1</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>libupnp</td>
<td>1.6.6</td>
<td>BSD</td>
<td><a href="http://pupnp.sourceforge.net/LICENSE">http://pupnp.sourceforge.net/LICENSE</a></td>
<td>nein</td>
</tr>
<tr>
<td>libusb</td>
<td>1.0.8</td>
<td>LGPL v2</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>linux</td>
<td>2.6.38.8</td>
<td>GPL v2</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>ltrace</td>
<td>0.5.3</td>
<td>GPL v2</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>lzo</td>
<td>2.05</td>
<td>GPL v2</td>
<td></td>
<td>nein</td>
</tr>
<tr>
<td>mii-diag</td>
<td>2.11</td>
<td>GPL</td>
<td></td>
<td>nein</td>
</tr>
</tbody>
</table>
### Paketname | Version | Lizenz | Lizenzdetails | Patches
--- | --- | --- | --- | ---
mini_httpd | 1.19 |  | Copyright © 1999,2000 by Jef Poskanzer  
<jef@mail.acme.com>.  
All rights reserved.  
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:  
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.  
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.  
THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS 'AS IS!' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | nein
mtd | 1.4.6 | GPL v2 |  | nein
<table>
<thead>
<tr>
<th>Paketname</th>
<th>Version</th>
<th>Lizenz</th>
<th>Lizenzdetails</th>
<th>Patches</th>
</tr>
</thead>
<tbody>
<tr>
<td>ncurses</td>
<td>5.7</td>
<td>Permissive free software licence</td>
<td>Copyright (c) 1998-2004,2006 Free Software Foundation, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the &quot;Software&quot;), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, distribute with modifications, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ABOVE COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization.</td>
<td>nein</td>
</tr>
<tr>
<td>netsnmp</td>
<td>5.6.1</td>
<td>BSD (mehrere)</td>
<td><a href="http://net-snmp.sourceforge.net/about/license.html">http://net-snmp.sourceforge.net/about/license.html</a></td>
<td>nein</td>
</tr>
<tr>
<td>ntp</td>
<td>4.2.8p2</td>
<td>NTP</td>
<td>Copyright (c) University of Delaware 1992-2011 Permission to use, copy, modify, and distribute this software and its documentation for any purpose with or without fee is hereby granted, provided that the above copyright notice appears in all copies and that both the copyright notice and this permission notice appear in supporting documentation, and that the name University of Delaware not be used in advertising or Publicity pertaining to distribution of the software without specific, written prior permission. The University of Delaware makes no representations about the suitability this software for any purpose. It is provided &quot;as is&quot; without express or implied warranty.</td>
<td>ja (6)</td>
</tr>
<tr>
<td>openssh</td>
<td>5.8p2</td>
<td>BSD</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>openssl</td>
<td>1.0.0d</td>
<td>Dual</td>
<td><a href="http://www.openssl.org/source/license.html">http://www.openssl.org/source/license.html</a></td>
<td>nein</td>
</tr>
<tr>
<td>readline</td>
<td>6.2</td>
<td>GPL</td>
<td>v3</td>
<td>nein</td>
</tr>
<tr>
<td>setserial</td>
<td>2.17</td>
<td>GPL</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>strace</td>
<td>4.5.20</td>
<td>BSD</td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>sudo</td>
<td>1.7.6p2</td>
<td>ISC-style</td>
<td><a href="http://www.sudo.ws/sudo/license.html">http://www.sudo.ws/sudo/license.html</a></td>
<td>nein</td>
</tr>
<tr>
<td>Paketname</td>
<td>Version</td>
<td>Lizenz</td>
<td>Lizenzdetails</td>
<td>Patches</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>uboot</td>
<td>2010.06</td>
<td>GPL</td>
<td>v2</td>
<td>nein</td>
</tr>
<tr>
<td>uboot-tools</td>
<td>2011.03</td>
<td>GPL</td>
<td>v2</td>
<td>ja (1)</td>
</tr>
<tr>
<td>uClibc</td>
<td>0.9.32</td>
<td>LGPL</td>
<td>v2.1</td>
<td>nein</td>
</tr>
<tr>
<td>usbutils</td>
<td>003</td>
<td>GPL</td>
<td>v2</td>
<td>nein</td>
</tr>
<tr>
<td>util-linux</td>
<td>2.19.1</td>
<td>GPL</td>
<td>v2</td>
<td>nein</td>
</tr>
<tr>
<td>which</td>
<td>2.20</td>
<td>GPL</td>
<td>v3</td>
<td>nein</td>
</tr>
<tr>
<td>zlib</td>
<td>1.2.5</td>
<td>Permissive free software licence</td>
<td><a href="http://www.gzip.org/zlib/zlib_license.html">http://www.gzip.org/zlib/zlib_license.html</a></td>
<td>nein</td>
</tr>
</tbody>
</table>