Technical Description

Interface Board 7201/7221

Safety information

The safety regulations and technical data are important for the smooth running of the devices and the protection of people and equipment. Strict compliance with these regulations is required. In case of non-compliance with these regulations the guarantee and warranty claims for the device and possible consequential damage expire.

Safety of the Devices

The production of this device follows the latest technological standards and safety regulations.

The device must not be assembled by anyone but trained personnel. Please make sure that all the connected cables are laid and fixed properly. The device is to be run with the supply voltage stated on the identification plate only.

Only trained personnel or specialists may operate the device.

Repair on opened devices must not be carried out by anyone but specially trained staff or by the *hopf* company.

If the maintenance work requires the opening of a device or if a fuse needs changing the device must be separated from all voltage supplies.

If there are reasons to believe that the operational safety can no longer be guaranteed the device must be taken out of service and labelled accordingly. The safety may be impaired when the device does not operate properly or if it is obviously damaged.

hopf Elektronik GmbH		
Notteboh Postfach		58511 Lüdenscheid 58468 Lüdenscheid
Tel.: Fax:	• • •	351 / 9386-86 351 / 9386-93
	http://www.hopf.com info@hopf.com	

Page

CONTENTS

1 General 5 1.1 Interface Board 7201 5 1.1.2 Specifications 5 1.1.3 Hardware-configuration - Board 7201 6 1.1.4 Pin Assignment - Board 7201 7 1.1.5 Technical Data - Board 7201 8 1.1.6 Technical Data - Board 7201 8 1.1.6 Biock Diagram - Board 7201 8 1.2.1 Functional Description 9 1.2.2 Specifications 9 1.2.3 Hardware-configuration - Board 7221 10 1.2.4 Pin Assignment - Board 7221 11 1.2.5 Technical Data - Board 7221 12 1.2.6 Biock Diagram - Board 7221 12 1.2.6 Biock Diagram - Board 7221 12 1.2.6 Biock Diagram - Board 7221 12 2.1.7 Data String Selection 13 2.1.1 Data String Biock 13 2.1.1 Data String Selection 16 2.3 Transmission Point for the Data String 16 2.4 Transmission Point for the Data String 16 2.7.7 Selection of the Transmission Format by means of DIP-switch SW1 18 2.7.4 Setting the Stop Bits 18	1 Co	aral	F
1.1.1 Functional Description 5 1.1.2 Specifications 5 1.1.3 Hardware-configuration - Board 7201 6 1.1.4 Pin Assignment - Board 7201 8 1.1.5 Technical Data - Board 7201 8 1.1.6 Block Diagram - Board 7201 8 1.2.1 Functional Description 9 1.2.2 Specifications 9 1.2.3 Expecifications 9 1.2.4 Pin Assignment - Board 7221 11 1.2.5 Technical Data - Board 7221 12 1.2.6 Block Diagram - Board 7221 13 2.1 Data String Selection 13 2.1.1 Data String Block 13 2.1.2 Data String Selection 16 2.3 Transmission with Control Characters 16 2.4 Transmission with Control Characters 16 2.5 Data Format of the Serial Transmission 16 2.7.2 Ses	i Gei		
1.12 Specifications 5 1.1.3 Hardware-configuration - Board 7201 6 1.1.4 Pin Assignment - Board 7201 7 1.1.5 Technical Data - Board 7201 8 1.1.6 Block Diagram - Board 7201 8 1.2.1 Interface Board 7221 9 1.2.1 Functional Description 9 1.2.2 Specifications 9 1.2.3 Hardware-configuration - Board 7221 10 1.2.4 Pin Assignment - Board 7221 12 1.2.5 Technical Data - Board 7221 12 1.2.6 Block Diagram - Board 7221 12 1.2.6 Block Diagram - Board 7221 12 1.2.7 The transmitice Data String Selection 13 2.1.1 Data String Selection 13 2.1.1 Data String Selection 13 2.1.2 Data String Selection 16 2.3 Transmission Delay 16 2.4 Transmission Delay 16 2.5 Data Format of the Cata String 17 2.7 Selection of the Transmission Format by means of DIP-switch SW1 18 2.7.2 Setting the Word Length 18 2.7.4 Setting the Stop Bis 18 2.7.5 Setting the Baud rate 18 <			
1.1.3 Hardware-configuration - Board 7201 6 1.1.4 Pin Assignment - Board 7201 8 1.1.5 Technical Data - Board 7201 8 1.1.6 Block Diagram - Board 7201 8 1.2.1 Functional Description 9 1.2.2 Specifications 9 1.2.3 Hardware-configuration - Board 7221 10 1.2.4 Pin Assignment - Board 7221 11 1.2.5 Technical Data - Board 7221 12 1.2.6 Block Diagram - Board 7221 12 1.2.6 Block Diagram - Board 7221 12 2.1 Data String Selection 13 2.1.1 Data String Block 13 2.1.1 Data String Block 13 2.1.2 Data String Block 13 2.1.1 Data String Block 13 2.1.2 Data String Block 13 2.1.1 Data String Block 13 2.1.1 Data String Block 13 2.1.1 Data String Block 13 2.1.2 Data String Block 13 2.1.1 Data String Block 13 2.1.1 Data String Block 13 2.1.2 Transmission Point for the Data String 16 2.5 Data Format of the Serinal Transmission 16			
1.1.5 Technical Data - Board 7201 8 1.1.6 Block Diagram - Board 7201 9 1.2.1 Functional Description 9 1.2.2 Specifications 9 1.2.3 Proficitations 9 1.2.4 Fin Assignment - Board 7221 10 1.2.5 Technical Data - Board 7221 12 1.2.6 Block Diagram - Board 7221 12 1.2.6 Block Diagram - Board 7221 12 2.1.6 Data String Selection 13 2.1.1 Data String Block 13 2.1.1 Data String Block 14 2.2 Transmission Point for the Data String 16 2.3 Transmission Point for the Data String 16 2.4 Transmission Point for the Data String 16 2.5 Data Format of the Serial Transmission 16 2.6 Serial Request 17 2.7 Selection of the Transmission Format by means of DIP-switch SW1 18 2.7.1 Output Local Time, Standard Time or UTC 18 2.7.3 Setting the Parity-Mode of the Transmission 18 2.7.4 Setting the Parity-Mode of the Transmission 19 3.1 hopf Standard String - time and date (standard) 19 3.1 hopf Standard String - time and date (standard) 19 </td <td></td> <td>1.1.3 Hardware-configuration - Board 7201</td> <td></td>		1.1.3 Hardware-configuration - Board 7201	
1.1.6 Block Diagram - Board 7201 8 1.2.1 Interface Board 7221 9 1.2.2 Specifications 9 1.2.3 Hardware-configuration - Board 7221 10 1.2.4 Pin Assignment - Board 7221 11 1.2.5 Technical Data - Board 7221 12 1.2.6 Block Diagram - Board 7221 12 2.1.6 Block Diagram - Board 7221 12 2.1.12.6 Block Diagram - Board 7221 12 2.1.2 Ata String Selection 13 2.1.1 Data String Selection 13 2.1.1 Data String Selection 16 2.3 Transmission with Control Characters 16 2.4 Transmission Point for the Data String 16 2.5 Data Format of the Serial Transmission 16 2.6 Serial Request 17 2.7 Selection of the Transmission Format by means of DIP-switch SW1 18 2.7.3 Setting the Parity-Mode of the Transmission 18 2.7.3 Setting the Baud rate 18 3 Structure of Data Strings 19 3.1 hopf Standard String - time and date (standard) 19 3.1.1 hopf Standard String - time and date (standard) 19 3.1.1 hopf Standard String - time only 21			
1.2 Interface Board 7221 9 1.2.1 Functional Description 9 1.2.2 Specifications 9 1.2.3 Hardware-configuration - Board 7221 10 1.2.4 Pin Assignment - Board 7221 12 1.2.5 Elock Diagram - Board 7221 12 1.2.6 Block Diagram - Board 7221 12 2.7 The transmitted Data Strings 73 2.1.1 Data String Selection 13 2.1.2 Data String Block 13 2.1.2 Data String Selection 16 2.3 Transmission Point for the Data String 16 2.4 Transmission Delay 16 2.5 Data Format of the Serial Transmission 16 2.5 Setting Request 17 2.7 Selection of the Transmission Format by means of DIP-switch SW1 18 2.7.3 Setting the Vard Length 18 2.7.4 Setting the Stop Bits 18 2.7.5 Setting the Baud rate 19 3.1.1 hopf Standard String - time and date (standard) 19 3.1.4 hopf Standard String - time and date (standard) 19 3.1.4 hopf Standard String - time and date (standard) 19 3.1.3 Status and Day of the Week Nibble 20 3.2.4 h			
1.2.1 Functional Description 9 1.2.2 Specifications 9 1.2.3 Hardware-configuration - Board 7221 10 1.2.4 Pin Assignment - Board 7221 11 1.2.5 Technical Data - Board 7221 12 2.1 Data String Selection 13 2.1.1 Data String Selection 13 2.1.1 Data String Block 13 2.1.2 Data String Selection 16 2.3.1 Transmission with Control Characters 16 2.3 Transmission Delay 16 2.4.5 Transmission Delay 16 2.5 Data Format of the Serial Transmission 16 2.6 Serial Request 17 2.7.3 Setting the Vord Length 18 2.7.3 Setting the String Selection 18 2.7.4 Setting the String Selection 18 2.7.5 Setting the Baud rate 18 3 Structure of Data Strings 19 3.1.1 hopf Standard String - time and date (standard) 19 3.1.2 hopf Standard String - time and date (standard) 19 3.1.1 hopf Standard String - time only 20 3.2 hopf Stoo - Time and Date 21 3.2.2 hopf 5500 - Time and Date 21			
1.2.2 Specifications 9 1.2.3 Hardware-configuration - Board 7221 10 1.2.4 Pin Assignment - Board 7221 11 1.2.5 Block Diagram - Board 7221 12 1.2.6 Block Diagram - Board 7221 12 2 The transmitted Data Strings 13 2.1.1 Data String Block 13 2.1.1 Data String Block 13 2.1.1 Data String Block 14 2.2 Transmission with Control Characters 16 2.3 Transmission Delay 16 2.4 Transmission Delay 16 2.5 Data Format of the Serial Transmission 16 2.5 Data Format of the Serial Transmission Format by means of DIP-switch SW1 18 2.7.1 Output Local Time, Standard Time or UTC 18 2.7.2 Setting the Word Length 18 2.7.3 Setting the Baur hate 18 2.7.4 Setting the Baur hate 19 3.1.1 hopf Standard String - time and date (standard) 19 3.1.2 hopf Standard String - time and date (standard) 19 3.1.4 bexample of transmitted Data String 20 3.1.4 biston and String - time and Date 21 3.2 hopf 5500 - Time and Date 22			
1.2.3 Hardware-configuration - Board 7221 10 1.2.4 Pin Assignment - Board 7221 12 1.2.6 Block Diagram - Board 7221 12 2 The transmitted Data String Selection 13 2.1.1 Data String Selection 13 2.1.2 Data String Selection 13 2.1.1 Data String Selection 13 2.1.2 Data String Selection 16 2.3 Transmission with Control Characters 16 2.4 Transmission Delay 16 2.5 Data Format of the Serial Transmission 16 2.6 Serial Request 17 2.7 Selection of the Transmission Format by means of DIP-switch SW1 18 2.7.1 Output Local Time, Standard Time or UTC 18 2.7.3 Setting the Parity-Mode of the Transmission 18 2.7.4 Setting the Stop Bits 18 2.7.5 Setting the Baud rate 19 3.1.1 hopf Standard String - time only 19 3.1.2 hopf Standard String (6021) 19 3.1.3 Lopf Standard String - time only 19 3.1.4 Example of transmitted Data String 20 3.2.1 hopf Standard String - time only 19 3.1.2 hopf Standard String - time only 21			
1.2.6 Technical Data - Board 7221121.2.6 Block Diagram - Board 7221122 The transmitted Data Strings132.1.1 Data String Selection132.1.2 Data String Block132.1.2 Data String Selection142.2.1 Transmission with Control Characters162.3 Transmission Point for the Data String162.4 Transmission Delay162.5 Data Format of the Serial Transmission162.6 Serial Request172.7 Selection of the Transmission Format by means of DIP-switch SW1182.7.1 Output Local Time, Standard Time or UTC182.7.3 Setting the Vord Length182.7.4 Setting the Stop Bits182.7.5 Selection of Standard String - time and date (standard)193.1 hopf Standard String - time and date (standard)193.1.1 hopf Standard String - time and date (standard)193.1.1 hopf Standard String - time and date (standard)193.1.2 hopf 5500 - Time and Date213.2.1 hopf 5500 - Time and Date233.2.1 hopf 5500 - Time and Date233.3.1 H&B 5050 - Time and Date243.3.1 H&B 5050 - Time and Date25 <td></td> <td>1.2.3 Hardware-configuration - Board 7221</td> <td>10</td>		1.2.3 Hardware-configuration - Board 7221	10
12.6 Block Diagram - Board 7221 12 2 The transmitted Data Strings 13 2.1.1 Data String Selection 13 2.1.1 Data String Block 13 2.1.2 Data String Block 13 2.2.1 Transmission With Control Characters 16 2.3 Transmission Delay 16 2.4 Transmission Delay 16 2.5 Data Format of the Serial Transmission 16 2.6 Serial Request 17 2.7 Selection of the Transmission Format by means of DIP-switch SW1 18 2.7.1 Output Local Time, Standard Time or UTC 18 2.7.2 Setting the Word Length 18 2.7.3 Setting the Stop Bits 18 2.7.4 Setting the Stop Bits 18 2.7.5 Setting the Baud rate 19 3.1.1 hopf Standard String - time and date (standard) 19 3.1.2 hopf Standard String - time and date (standard) 19 3.1.2 hopf Standard String - time and Date 21 3.2.2 hopf 5500 21 3.2.1 hopf Stoo - Time and Date 23 3.2.2 hopf 5500 - Time and Date 23 3.3.1 H&B Stofo Time and Date 23 3.3.2 H&B Stofo - Time and Date			
2 The transmitted Data Strings132.1 Data String Selection132.1.1 Data String Block132.1.2 Data Strings142.2 Transmission with Control Characters162.3 Transmission Delay162.4 Transmission Delay162.5 Data Format of the Serial Transmission162.6 Serial Request172.7 Selection of the Transmission Format by means of DIP-switch SW1182.7.1 Output Local Time, Standard Time or UTC182.7.2 Setting the Parity-Mode of the Transmission182.7.3 Setting the Parity-Mode of the Transmission182.7.4 Setting the Stop Bits182.7.5 Setting the Baud rate193.1.1 hopf Standard String (6021)193.1.1 hopf Standard String - time and date (standard)193.1.2 hopf Standard String - time and date (standard)193.2.1 hopf Stoo - Time and Date213.2.1 hopf 5500 - Time and Date213.2.1 hopf 5500 - Time and Date213.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date243.3.2 H&B 5050 - Time and Date<			
2.1 Data String Selection132.1.1 Data String Block132.1.2 Data String Block142.2 Transmission with Control Characters162.3 Transmission Dolt for the Data String162.4 Transmission Delay162.5 Data Format of the Serial Transmission162.6 Serial Request172.7 Selection of the Transmission Format by means of DIP-switch SW1182.7.1 Output Local Time, Standard Time or UTC182.7.2 Setting the Word Length182.7.3 Setting the Parity-Mode of the Transmission182.7.4 Setting the Stop Bits182.7.5 Setting the Baud rate193.1.1 hopf Standard String - time only193.1.1 hopf Standard String - time only193.1.2 hopf Standard String - time only193.1.3 Status and Day of the Week Nibble203.2.1 hopf 5500 - Time and Date213.2.2 hopf 5500 - Time and Date213.3.1 H&B 5050 - Time and Date213.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date243.3.2 H&B 5050 - Time and Date243.3.3 H&B 5050 - Time and Date253.4.4 Example of a transmitted Data String243.3.4 H&B 5050 - Time and Date253.3.5 Katus and Day of the Week Nibble243.3.5 L Example of a transmitted Data String243.4.1 Required setting in case of output MADAM-S27<		1.2.6 Block Diagram - Board 7221	12
2.1.1 Data String Block132.1.2 Data Strings142.2 Transmission with Control Characters162.3 Transmission Point for the Data String162.4 Transmission Delay162.5 Data Format of the Serial Transmission162.6 Serial Request172.7 Selection of the Transmission Format by means of DIP-switch SW1182.7.1 Output Local Time, Standard Time or UTC182.7.2 Setting the Word Length182.7.3 Setting the Parity-Mode of the Transmission182.7.4 Setting the Stop Bits182.7.5 Setting the Baud rate183 Structure of Data Strings993.1 hopf Standard String (6021)193.1.1 hopf Standard String - time and date (standard)193.1.2 hopf Standard String - time and date (standard)193.1.3 Eastus and Day of the Week Nibble203.2.4 Indp 5500 - Time and Date213.2.2 hopf 5500 - Time and Date233.3.1 Haß 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date243.3.2 H&B 5050 - Time and Date253.3.1 H&B 5050 - Time and Date253.3.1 H&B 5050 - Time and Date263.3.2 H&B 5050 - Time and Date263.3.4 H&B 5050 - Time and Date273.3.1 H&B 5050 - Time and Date263.3.2 H&B 5050 - Time and Date273.3.1 H&B 5050 - Time and Date283.3.2 H&B 5050 - Time and Date273.3.2 H&B 5050 - Time and Da		•	
2.1.2 Data Strings142.2 Transmission with Control Characters162.3 Transmission Point for the Data String162.4 Transmission Delay162.5 Data Format of the Serial Transmission162.6 Serial Request172.7 Selection of the Transmission Format by means of DIP-switch SW1182.7.1 Output Local Time, Standard Time or UTC182.7.2 Setting the Word Length182.7.3 Setting the Bat Length182.7.4 Setting the Bot Bits182.7.5 Setting the Bat at rate183 Structure of Data Strings193.1 hopf Standard String - time and date (standard)193.1.1 hopf Standard String - time only193.1.3 Status and Day of the Week Nibble203.2 hopf 5500213.2.1 hopf 5500 - Time and Date213.2.2 kapf 5500 - Time and Date213.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time and Date243.3.3 LA Example of a transmitted Data String243.3.4 L& Status and Day of the Week Nibble243.3.4 L& Status Nibble253.4.4 Example of a transmitted Data String243.5.1 Katus293.5.1 Status293.5.1 Status293.5.1 Status293.5.1 Status293.5.1 Status and Day of the Week Nibble263.5.1 Status293.5.2 Example of a transmit			
2.2 Transmission with Control Characters162.3 Transmission Point for the Data String162.4 Transmission Delay162.5 Data Format of the Serial Transmission162.6 Serial Request172.7 Selection of the Transmission Format by means of DIP-switch SW1182.7.1 Output Local Time, Standard Time or UTC182.7.2 Setting the Parity-Mode of the Transmission182.7.3 Setting the Parity-Mode of the Transmission182.7.4 Setting the Stop Bits182.7.5 Setting the Baud rate183 Structure of Data Strings193.1 hopf Standard String - time and date (standard)193.1.1 hopf Standard String - time and date (standard)193.1.2 hopf Standard String - time and Date203.1.4 kexample of transmitted Data String203.2.1 hopf 5500 - Time and Date213.2.2 hopf 5500 - Time and Date213.2.4 kexample of a transmitted Data String223.3 H&B 5050 (PCZ77)233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time and Date233.3.4 kaxample of a transmitted Data String243.3.4 kaxample of a transmitted Data String243.4 kaxample of a transmitted Data String243.4 kaxample of a transmitted Data String233.5 SINEC H1283.5.1 Status293.5.1 Status293.5.1 Status and Day of the Week Nibble273.5.1 Status293.5.1 Status and Day of the Week Nibble2			
2.3 Transmission Point for the Data String162.4 Transmission Delay162.5 Data Format of the Serial Transmission162.6 Serial Request172.7 Selection of the Transmission Format by means of DIP-switch SW1182.7.1 Output Local Time, Standard Time or UTC182.7.2 Setting the Word Length182.7.3 Setting the Baudrate Time or UTC182.7.4 Setting the Boto Length182.7.5 Setting the Baudrate182.7.5 Setting the Baudrate183.1 hopf Standard String time and date (standard)193.1 hopf Standard String (6021)193.1.1 hopf Standard String - time and date (standard)193.1.2 hopf Standard String - time and date (standard)193.1.3 Status and Day of the Week Nibble203.2.1 hopf 5500 - Time and Date213.2.2 hopf 5500 - Time and Date213.2.3 Status and Day of the Week Nibble223.3.1 H&B 5050 - Time and Date213.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date243.3.1 H&B 5050 - Time and Date243.3.1 H&B 5050 - Time only243.3.1 H&B 5050 - Time only <td></td> <td></td> <td></td>			
2.4 Transmission Delay162.5 Data Format of the Serial Transmission162.6 Serial Request172.7 Selection of the Transmission Format by means of DIP-switch SW1182.7.1 Output Local Time, Standard Time or UTC182.7.2 Setting the Word Length182.7.3 Setting the Parity-Mode of the Transmission182.7.4 Setting the Baud rate182.7.5 Setting the Baud rate183 Structure of Data Strings193.1 hopf Standard String (6021)193.1.1 hopf Standard String - time and date (standard)193.1.2 hopf Standard String - time and date (standard)193.1.2 hopf Standard String - time and date (standard)203.1.4 Example of transmitted Data String203.2.1 hopf 5500213.2.2 hopf 5500213.2.2 hopf 5500213.2.3 tatus and Day of the Week Nibble223.2.4 kample of a transmitted Data String223.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date243.3.2 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date243.3.1 H&B 5050 - Time and Date243.3.2 H&B S050 - Time and Date233.3.3 H&B S050 - Time and Date243.4 L Raquired setting in case of o			-
2.5 Data Format of the Serial Transmission162.6 Serial Request172.7 Selection of the Transmission Format by means of DIP-switch SW1182.7.1 Output Local Time, Standard Time or UTC182.7.2 Setting the Word Length182.7.3 Setting the Parity-Mode of the Transmission182.7.4 Setting the Stop Bits182.7.5 Setting the Baud rate183 Structure of Data Strings193.1 hopf Standard String (6021)193.1.1 hopf Standard String - time and date (standard)193.1.2 hopf Standard String - time and date (standard)193.1.3 Status and Day of the Week Nibble203.2 hopf 5500213.2.1 hopf 5500 - Time and Date213.2.2 hopf 5500 - Time and Date213.2.3 Status and Day of the Week Nibble223.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date243.3.2 H&B 5050 - Time and Date253.4 Example of a transmitted Data String243.5 SINEC H1283.5 SINEC H1283.5.1 Status293.5.1 Status293.5.1 Status293.5.2 Example of a transmitted Data String293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble30 </td <td></td> <td></td> <td>-</td>			-
2.6 Serial Request172.7 Selection of the Transmission Format by means of DIP-switch SW1182.7.1 Output Local Time, Standard Time or UTC182.7.2 Setting the Word Length182.7.3 Setting the Parity-Mode of the Transmission182.7.4 Setting the Baud rate183 Structure of Data Strings193.1 hopf Standard String (6021)193.1.1 hopf Standard String - time and date (standard)193.1.2 hopf Standard String - time and date (standard)193.1.2 hopf Standard String - time and bate (standard)203.1.4 Example of transmitted Data String203.2 hopf 5500213.2.1 hopf 5500 - Time and Date213.2.2 hopf 5500 - Time and Date213.2.4 Example of a transmitted Data String223.3 H&B 5050 (PCZ77)233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date243.3.2 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date243.3.2 H&B 5050 - Time and Date243.3.3 1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date243.3.3 1 H&B 5050 - Time and Date253.4.1 Required setting in case of output MADAM-S273.5 SINEC H1283.5.2 Example			
2.7 Selection of the Transmission Format by means of DIP-switch SW1182.7.1 Output Local Time, Standard Time or UTC182.7.2 Setting the Word Length182.7.3 Setting the Parity-Mode of the Transmission182.7.4 Setting the Parity-Mode of the Transmission182.7.5 Setting the Baud rate183 Structure of Data Strings193.1 hopf Standard String (6021)193.1.1 hopf Standard String - time and date (standard)193.1.2 hopf Standard String - time and date (standard)193.1.2 hopf Standard String - time and date (standard)203.1.4 hopf Standard String - time and date (standard)213.1.2 hopf Standard String - time and date (standard)213.2.1 hopf 5500213.2.1 hopf 5500 - Time and Date213.2.1 hopf 5500 - Time only213.2.3 Status and Day of the Week Nibble223.2.4 Example of a transmitted Data String223.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date243.3.2 H&B 5050 - Time and Date243.3.4 Example of a transmitted Data String243.4 Example of a transmitted Data String243.4 Example of a transmitted Data String243.5 SINEC H1283.6 NEC H1283.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.1 Status and Day of the Week Nibble303.6.1 Status and Day of the Week Nibble30 </td <td></td> <td></td> <td></td>			
2.7.1 Output Local Time, Standard Time or UTC 18 2.7.2 Setting the Word Length 18 2.7.3 Setting the Stop Bits 18 2.7.4 Setting the Stop Bits 18 2.7.5 Setting the Baud rate 18 3 Structure of Data Strings 19 3.1 hopf Standard String (6021) 19 3.1.1 hopf Standard String - time only 19 3.1.2 hopf Standard String - time only 19 3.1.3 Status and Day of the Week Nibble 20 3.2.1 hopf 5500 21 3.2.1 hopf 5500 - Time and Date 22 3.2.4 kample of a transmitted Data String 22 3.3.1 H&B 5050 (PCZ77) 23 3.3.1 H&B 5050 - Time and Date 23 3.3.2 H&B 5050 - Time and Date 24 3.3.3 Status and Day of the Week Nibble 24 3.3.3 Status and Day of the Week Nibble 24 3.4 Example of a transmitted Data String 24 3.4 I Required setting in case of output MADAM-S 27 3.4.1 Required setting in case of output		•	
2.7.3 Setting the Parity-Mode of the Transmission 18 2.7.4 Setting the Stop Bits 18 2.7.5 Setting the Baud rate 18 3 Structure of Data Strings 19 3.1 hopf Standard String (6021) 19 3.1.1 hopf Standard String - time and date (standard) 19 3.1.2 hopf Standard String - time only 19 3.1.3 Status and Day of the Week Nibble 20 3.2 hopf 5500 21 3.2.1 hopf 5500 - Time and Date 21 3.2.2 hopf 5500 - Time and Date 21 3.2.3 Status and Day of the Week Nibble 22 3.2.4 Example of a transmitted Data String 22 3.3.4 Example of a transmitted Data String 23 3.3.1 H&B 5050 - Time and Date 23 3.3.1 H&B 5050 - Time and Date 23 3.3.2 H&B 5050 - Time and Date 23 3.3.3 Status and Day of the Week Nibble 24 3.3.3 Status and Day of the Week Nibble 24 3.3.4 Example of a transmitted Data String 24 3.3.4 Example of a transmitted Data String 25 3.4.1 Required setting in case of output MADAM-S 27 3.5.1 Status 29		2.7.1 Output Local Time, Standard Time or UTC	18
2.7.4 Setting the Stop Bits 18 2.7.5 Setting the Baud rate 18 3 Structure of Data Strings 19 3.1 hopf Standard String (6021) 19 3.1.1 hopf Standard String - time and date (standard) 19 3.1.2 hopf Standard String - time only 19 3.1.3 Status and Day of the Week Nibble 20 3.1.4 Example of transmitted Data String 20 3.2 hopf 5500 21 3.2.1 hopf 5500 - Time and Date 21 3.2.2 hopf 5500 - Time only 21 3.2.3 Status and Day of the Week Nibble 22 3.2.4 Example of a transmitted Data String 22 3.2.4 Example of a transmitted Data String 23 3.3.1 H&B 5050 - Time and Date 23 3.3.1 H&B 5050 - Time and Date 23 3.3.1 H&B 5050 - Time and Date 23 3.3.2 H&B 5050 - Time and Date 23 3.3.3 Status and Day of the Week Nibble 24 3.3.3 Status and Day of the Week Nibble 24 3.4 Example of a transmitted Data String 25 3.4.1 Required setting in case of output MADAM-S 27 3.5.3 SINEC H1 28 3.5.1 Status <td></td> <td></td> <td>-</td>			-
2.7.5 Setting the Baud rate 18 3 Structure of Data Strings 19 3.1 hopf Standard String (6021) 19 3.1.1 hopf Standard String - time and date (standard) 19 3.1.2 hopf Standard String - time and date (standard) 19 3.1.3 bopt Standard String - time and date (standard) 19 3.1.2 hopf Standard String - time and pate 20 3.1.4 Example of transmitted Data String 20 3.2 hopf 5500 21 3.2.1 hopf 5500 - Time and Date 21 3.2.2 hopf 5500 - Time only 21 3.2.3 Status and Day of the Week Nibble 22 3.2.4 Example of a transmitted Data String 22 3.3.1 H&B 5050 - Time and Date 23 3.3.1 H&B 5050 - Time and Date 23 3.3.1 H&B 5050 - Time and Date 23 3.3.2 H&B 5050 - Time and Date 23 3.3.3 Status and Day of the Week Nibble 24 3.3.3 Status and Day of the Week Nibble 24 3.4 Example of a transmitted Data String 24 3.4.2 Status Nibble 27 3.5.1 Status 29 3.5.2 Example of a transmitted Data String 29 3.5.1 S			-
3 Structure of Data Strings193.1 hopf Standard String (6021)193.1.1 hopf Standard String - time and date (standard)193.1.2 hopf Standard String - time only193.1.3 hopf Standard String - time only193.1.3 Status and Day of the Week Nibble203.1.4 Example of transmitted Data String203.2 hopf 5500213.2.1 hopf 5500 - Time and Date213.2.2 hopf 5500 - Time only213.2.3 Status and Day of the Week Nibble223.2.4 Example of a transmitted Data String223.3 H&B 5050 (PCZ77)233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time only243.3.2 H&B 5050 - Time only243.3.3 Status and Day of the Week Nibble243.3.4 Example of a transmitted Data String243.4 Example of a transmitted Data String243.4 I. Required setting in case of output MADAM-S273.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			-
3.1 hopf Standard String (6021)193.1.1 hopf Standard String - time and date (standard)193.1.2 hopf Standard String - time only193.1.3 Status and Day of the Week Nibble203.1.4 Example of transmitted Data String203.2 hopf 5500213.2.1 hopf 5500 - Time and Date213.2.2 hopf 5500 - Time only213.2.3 Status and Day of the Week Nibble223.2.4 Example of a transmitted Data String223.3 H&B 5050 (PCZ77)233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time and Date233.3.3 H&B 5050 - Time and Date243.3.4 Example of a transmitted Data String243.3.2 H&B 5050 - Time only243.3.4 Example of a transmitted Data String243.4 Example of a transmitted Data String273.4.1 Required setting in case of output MADAM-S273.5 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String303.6.2 Example of a transmitted Data String31		-	-
3.1.1 hopf Standard String - time and date (standard)193.1.2 hopf Standard String - time only193.1.3 batus and Day of the Week Nibble203.1.4 Example of transmitted Data String203.2 hopf 5500213.2.1 hopf 5500 - Time and Date213.2.2 hopf 5500 - Time only213.2.3 Status and Day of the Week Nibble223.2.4 Example of a transmitted Data String223.2.4 Example of a transmitted Data String223.3.1 H&B 5050 (PCZ77)233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time and Date233.3.3 Status and Day of the Week Nibble243.3.3 Status and Day of the Week Nibble243.3.4 Example of a transmitted Data String243.3.5 Status and Day of the Week Nibble273.4.1 Required setting in case of output MADAM-S273.5.2 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6.1 Status and Day of the Week Nibble303.6.1 Status and Day of the Week Nibble303.6.1 Status and Day of the Week Nibble303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.1.2 hopf Standard String - time only193.1.3 Status and Day of the Week Nibble203.1.4 Example of transmitted Data String203.2 hopf 5500213.2.1 hopf 5500 - Time and Date213.2.2 hopf 5500 - Time only213.2.3 Status and Day of the Week Nibble223.2.4 Example of a transmitted Data String223.3 H&B 5050 (PCZ77)233.3.1 H&B 5050 - Time and Date233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time and Date233.3.3 H&B 5050 - Time only243.3.3 Status and Day of the Week Nibble243.3.3 Exaus and Day of the Week Nibble243.3.4 Example of a transmitted Data String243.4 Example of a transmitted Data String253.4.1 Required setting in case of output MADAM-S273.5 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.1.3 Status and Day of the Week Nibble 20 3.1.4 Example of transmitted Data String 20 3.2 hopf 5500 21 3.2.1 hopf 5500 - Time and Date 21 3.2.2 hopf 5500 - Time only 21 3.2.3 Status and Day of the Week Nibble 22 3.2.4 Example of a transmitted Data String 22 3.3.4 H&B 5050 (PCZ77) 23 3.3.1 H&B 5050 - Time and Date 23 3.3.1 H&B 5050 - Time and Date 23 3.3.2 H&B 5050 - Time only 24 3.3.3 Status and Day of the Week Nibble 24 3.3.3 Status and Day of the Week Nibble 24 3.3.4 Example of a transmitted Data String 24 3.4 Example of a transmitted Data String 25 3.4.1 Required setting in case of output MADAM-S 27 3.5 SINEC H1 28 3.5.1 Status 29 3.5.2 Example of a transmitted Data String 29 3.5.1 Status 29 3.6.1 Status and Day of the Week Nibble 30 3.6.1 Status and Day of the Week Nibble 30 3.6.1 Status and Day of the Week Nibble 30 3.6.1 Status and Day of the Week Nibble <td< td=""><td></td><td></td><td></td></td<>			
3.1.4 Example of transmitted Data String203.2 hopf 5500213.2.1 hopf 5500 - Time and Date213.2.2 hopf 5500 - Time only213.2.3 Status and Day of the Week Nibble223.2.4 Example of a transmitted Data String223.3 H&B 5050 (PCZ77)233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time and Date243.3.3 Status and Day of the Week Nibble243.3.4 Example of a transmitted Data String243.3.4 Example of a transmitted Data String243.4 Example of a transmitted Data String243.4 Example of a transmitted Data String253.4.1 Required setting in case of output MADAM-S273.5 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.2.1 hopf 5500 - Time and Date213.2.2 hopf 5500 - Time only213.2.3 Status and Day of the Week Nibble223.2.4 Example of a transmitted Data String223.3 H&B 5050 (PCZ77)233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time only243.3.3 Status and Day of the Week Nibble243.3.3 Status and Day of the Week Nibble243.4 Example of a transmitted Data String243.4 Example of a transmitted Data String243.4 I. Required setting in case of output MADAM-S253.4.1 Required setting in case of output MADAM-S273.5 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			20
3.2.2 hopf 5500 - Time only213.2.3 Status and Day of the Week Nibble223.2.4 Example of a transmitted Data String223.3 H&B 5050 (PCZ77)233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time only243.3.3 Status and Day of the Week Nibble243.3.4 Example of a transmitted Data String243.4 Example of a transmitted Data String243.4 Example of a transmitted Data String253.4.1 Required setting in case of output MADAM-S273.5 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.2.3 Status and Day of the Week Nibble223.2.4 Example of a transmitted Data String223.3 H&B 5050 (PCZ77)233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time only243.3.3 Status and Day of the Week Nibble243.3.4 Example of a transmitted Data String243.4 Example of a transmitted Data String243.4 I Required setting in case of output MADAM-S253.4.1 Required setting in case of output MADAM-S273.5 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.2.4 Example of a transmitted Data String223.3 H&B 5050 (PCZ77)233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time only243.3.3 Status and Day of the Week Nibble243.3.4 Example of a transmitted Data String243.4 Example of a transmitted Data String243.4 I Required setting in case of output MADAM-S253.4.1 Required setting in case of output MADAM-S273.5 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.3 H&B 5050 (PCZ77)233.3.1 H&B 5050 - Time and Date233.3.2 H&B 5050 - Time only243.3.3 Status and Day of the Week Nibble243.3.4 Example of a transmitted Data String243.4 MADAM-S253.4.1 Required setting in case of output MADAM-S273.4.2 Status Nibble273.5 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.3.2 H&B 5050 - Time only243.3.3 Status and Day of the Week Nibble243.3.4 Example of a transmitted Data String243.4 MADAM-S253.4.1 Required setting in case of output MADAM-S273.4.2 Status Nibble273.5 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.3.3 Status and Day of the Week Nibble243.3.4 Example of a transmitted Data String243.4 MADAM-S253.4.1 Required setting in case of output MADAM-S273.4.2 Status Nibble273.5 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.3.4 Example of a transmitted Data String243.4 MADAM-S253.4.1 Required setting in case of output MADAM-S273.4.2 Status Nibble273.5 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.4 MADAM-S253.4.1 Required setting in case of output MADAM-S273.4.2 Status Nibble273.5 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.4.1 Required setting in case of output MADAM-S273.4.2 Status Nibble273.5 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.4.2 Status Nibble273.5 SINEC H1283.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.5.1 Status293.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.5.2 Example of a transmitted Data String293.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.5.3 String request293.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.6 hopf DCF-Slave303.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.6.1 Status and Day of the Week Nibble303.6.2 Example of a transmitted Data String31			
3.6.2 Example of a transmitted Data String 31			
3.6.3 Set-up 31			
		3.6.3 Set-up	31

CONTENTS

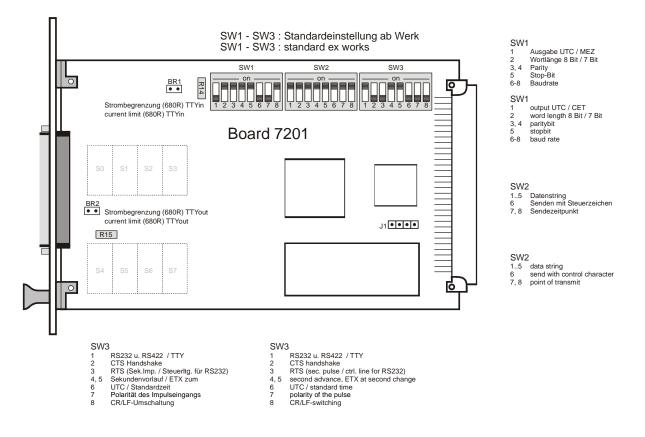
ONTENTS	Page
3.7 hopf UTC-Slave	32
3.7.1 Status and Day of the Week Nibble	33
3.7.2 Setting	33
3.8 Data String T-String	34
3.8.1 Example of a transmitted Data String	34
3.9 hopf Date / Time	35
3.9.1 hopf Date / Time - date and time 3.9.2 Example of transmitted Data String	35 35
3.10 SINEC H1 Extended	36
3.10.1 Status	37
3.10.2 Example of a Transmitted Data String	37
3.11 hopf 2000 - 4-Digit Year Output	38
3.11.1 hopf 2000 with a 4 Digit Year Output	38
3.11.2 Status and Day of the Week Nibble	39
3.11.3 Example of transmitted Data String	39
3.12 IBM Sysplex Timer Model 1+2	40
3.12.1 Status 3.12.2 Example of a transmitted Data String	41 41
3.13 NTP (Network Time Protocol)	42
3.14 TimeServ for the Operating System Windows NT	43
3.15 Sicomp M	44
3.15.1 Status	45
3.16 H&B	46
3.16.1 Status and Day of the Week Nibble	47
3.16.2 Example of a transmitted Data String	47
3.17 hopf Master/Slave	48
3.17.1 Status and Day of the Week Nibble	49
3.17.2 Example of a Transmitted Data String	49
3.17.3 Settings	49
3.18 hopf Time Capture (Board 7201 only)	50
3.19 ABB 23RC20	52
3.19.1 Status	52
3.20 ABB-SPA Seconds-Clock 3.20.1 Seconds String	53 53
3.20.2 Time Data String Date and Time	54
3.21 MDR 2000	55
3.21.1 Status	56
3.22 hopf Clockmouse	57
3.22.1 Status	58
3.23 hopf Clockmouse with <o><cr></cr></o>	59
3.24 DCF77-pulse output	60
3.25 NMEA - GPRMC	62
3.26 DA55	64
3.27 OMS Synchro	66
3.28 IRIG J-1x	67
3.28.1 Example of a transmitted Data String	67
3.29 CCTV	68
3.30 ABB Master-Clock	69
3.31 BEXBACH	70
3.31.1 Status	71 71
3.31.2 Example of a transmitted Data String 3.31.3 String request	71
3.32 Data String NGTS-String	72
3.32.1 Structure of Data String	72
3.32.2 Example of Data String	72
3.33 SAT 1703 Time String	73
3.33.1 Specified Settings	73
3.33.2 Structure	73
3.33.3 Status	74
3.33.4 Example	74

<u>1 General</u>

There is an Interface board with two different explanations available for the system 7000 and 7001:

- Interface board 7201
- Interface board 7221

1.1 Interface Board 7201


1.1.1 Functional Description

The microprocessor of the interface board 7201 receives the time information via the *hopf* 7001 system bus. The received time can be put out via one of three interfaces. There is a DIP-switch to set cyclic data outputs (e.g. data output every minute).

Baud rate, word length as well as the number of stop bits and parity mode can also be set by means of a DIP-switch. It is possible to set various data strings as output data strings by means of a DIP-switch.

1.1.2 Specifications

- data output via: RS232c (V.24), RS422c (V.11), TTY (20 mA passive)
- baud rate :150 19200 baud, TTY (max. 9600 baud, recommended: max. 2400 baud)
- various output strings can be set by means of DIP-Switch (e.g. output UTC time).
- Indication of internal clock status in the status byte of the data string.
- Potential separate RS232c- and RS422 interface

1.1.3 Hardware-configuration - Board 7201

1.1.3.1 Choice of Interface

The radio clock is equipped with 3 serial interfaces:

RS232c (V.24), RS422 (V.11), TTY (20mA-passive)

If a cyclic data output is preset the data string appears at all serial exits. The request for data via the RxD lines can come from only one entry. It is possible to configure the board especially for this case by means of DIP-Switch 3 push button 1 between entry TTY or RS232/RS422.

DIP-Switch 3 push button1

on serial input RS232c and RS422 active

off serial input TTY active

The RS232- and RS422 interfaces are equipped with a potential separation.

A series resistance (680 Ohm) to limit the current can be looped into the TTY- interface. For this purpose bridge BR1 for the input and BR2 for the output must be opened (see position diagram in the appendix).

1.1.3.2 Handshakelines (only with RS232c)

The RS232c-interface of the board is equipped with the standard handshake lines which can be used or deactivated depending on the use. DIP-Switch 3 push button 2 selects the use.

DIP-Switch 3 push button 2

on RTS ⇒ CTS Handshake active

off RTS ⇒ CTS Handshake inactive

The RS232 control line RTS can also be used as second pulse. For this purpose the handshake switch must be activated.

DIP-Switch 3 push button 3

- on RTS as second pulse with RS232c level
- off RTS as control line for RS232c

Please Note: WHEN OPERATING THE BOARD VIA RS422/TTY-INTERFACE DIP-SWITCH 3 PUSH BUTTON 2 MUST BE IN THE OFF POSITION.

1.1.4 Pin Assignment - Board 7201

1.1.4.1 RS232c-Interface

25-pole Sub-D-connector in the front panel pin no.	Signal name	96-pole VG-strip pin no.:
2	TxD (transmit data)	2a
3	RxD (receive data)	3a
4	RTS (ready to send)	4a
5	CTS (clear to send)	5a
7	0 Volt (GND)	7a

1.1.4.2 TTY-Interface (passive)

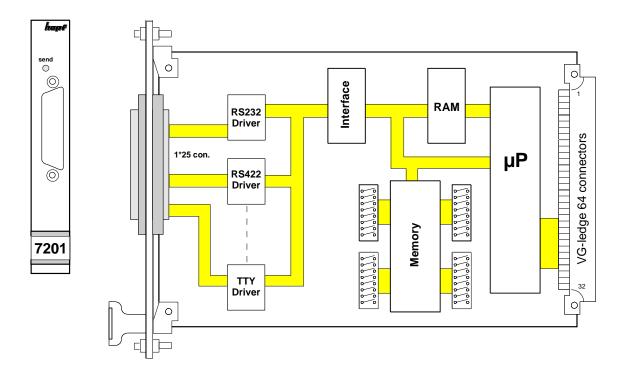
25-pole Sub-D-connector in the front panel pin no.	Signal name	96-pole VG-strip pin no.:
7	0 Volt (GND)	7a
9	+ output	9a
10	 output 	10a
24	+ input	11c
25	– input	12c

1.1.4.3 RS422-Interface

25-pole Sub-D-connector in the front panel pin no.	Signal name	96-pole VG-strip pin no.:
7	0 V (GND)	7a
11	RS422 (V.11) -TxD ^L	11a
12	RS422 (V.11) +TxD ^H	12a
22	RS422 (V.11) -RxD ^L	9c
23	RS422 (V.11) +RxD ^H	10c

- L RS422 (V.11) low active
 RS422 (V.11) high active

1.1.5 Technical Data - Board 7201


voltage supply:	+ 5 V DC ± 5%
current consumption:	approx. 300 mA
interfaces:	TTY-passive / RS232c / RS422
data-format:	ASCII
MTBF:	250 000 h

extras:

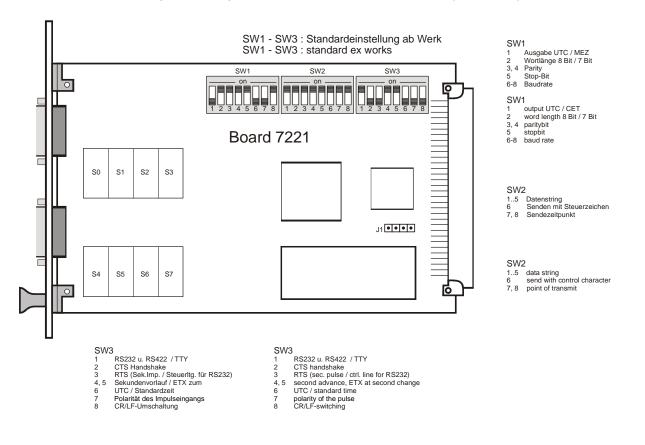
Hard- and software alterations according to customer specifications are possible.

Please Note: The *hopf* COMPANY WITHHOLD THE RIGHT TO HARD- AND SOFTWARE ALTERA-TIONS AT ANY TIME.

1.1.6 Block Diagram - Board 7201

1.2 Interface Board 7221

1.2.1 Functional Description


The microprocessor of the interface board 7221 receives the time information via the *hopf* 7001 system bus.

The received time is put out via 8 interfaces. It is possible to set cyclic data outputs (e.g. every minute data output) by means of a DIP-switch. Baud rate, word length as well as the number of stop bits and parity mode can also be set by means of a DIP-switch.

It is possible to set various data strings as output data strings by means of a DIP-switch.

1.2.2 Specifications

- Data output via: RS232c (V.24), RS422c (V.11)
- Baud rate: 150 19200 Baud
- Various output strings can be set by DIP-switch (e.g. output of UTC-time)
- Indication of internal clock status in the status byte of the data string.
- Two potential separate RS232- and RS422 interfaces (S0 and S7).

1.2.3 Hardware-configuration - Board 7221

1.2.3.1 Choice of Interface

The radio clock is equipped with 8 serial interfaces. Every interface connector (S0-S7) has the standard interface formats:

RS232c (V.24), RS422 (V.11)

The RS232- and RS422 interfaces of S0 and S7 are equipped with potential separation. S0 can also operate with the handshake lines RTS/CTS.

The interface S0 has a serial input where time data can be requested using ASCII control characters. Optionally it is possible to equip the interface S7 with a serial input at a later date.

S1-S6/7 can be used only as outputs. When the cyclic output is set the data string appears at all the serial outputs (S0-S7). Data request via the RxD line at interface S0 may be carried out only via RS232 or RS422.

1.2.3.2 Handshakelines (only at RS232c and S0)

The RS232c-interface of the interface S0 is equipped with the standard handshake lines. These handshake lines can be - depending on the purpose - either used or deactivated. Selection by DIP-Switch 3 switch 2.

DIP-Switch 3 switch 2

on RTS ⇔ CTS handshake active

off RTS ⇔ CTS handshake inactive)

The RS232 control line RTS can also be used as second pulse. To do so **DIP-Switch 3 switch 2 must be on** (handshake-switch inactive).

DIP-Switch 3 switch 3

- on RTS as second pulse with RS232 level
- off RTS as control line for RS232

Please Note:WHEN OPERATING THE BOARD AT THE INTERFACES S1-S7 DIP-SWITCH 3 SWITCH
2 MUST BE IN POSITION OFF.

1.2.4 Pin Assignment - Board 7221

1.2.4.1 The Interface S0

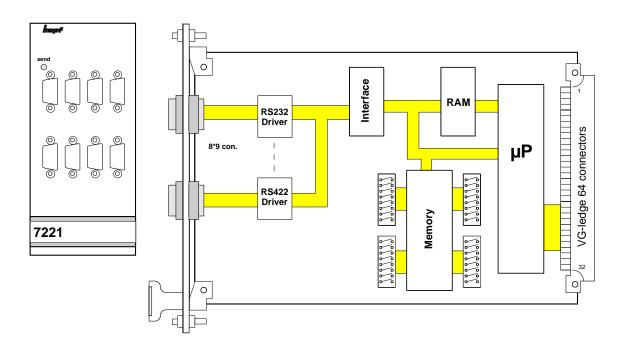
The interface S0 is also connected to the VG-strip. The assignment is listed below:

9-pole SUB-D connector in the front panel pin no.	signal name	96-pole VG-strip pin no.:
1	GND	7 a
2	RxD (receive data) RS232c	3 a
3	CTS (clear to sent) RS232c	5 a
4	I + (input) RS422	9 c
5	I + (output) RS422	11 a
6	TxD (transmit data) RS232c	2 a
7	RTS (ready to sent) RS32c	4 a
8	I - (input) RS422	10 c
9	I - (output) RS422	12 a

1.2.4.2 The Interfaces S1-S7

9-pole SUB-D connector in the front panel pin no.	signal name
1	GND
5	I + (output) RS422
6	TxD (transmit data) RS232c
9	I - (output) RS422

1.2.5 Technical Data - Board 7221


voltage supply:	+ 5 V DC ± 5%
current consumption:	approx. 450 mA
interfaces:	RS232c / RS422
data-format:	ASCII
MTBF:	200 000 h

extras:

Hard- and software alterations according to customer specifications are possible.

Please Note: THE hopf COMPANY WITHHOLD THE RIGHT TO HARD- AND SOFTWARE ALTERA-TIONS AT ANY TIME.

1.2.6 Block Diagram - Board 7221

2 The transmitted Data Strings

The board 7201 supports different data strings for the output.

2.1 Data String Selection

All data strings are separated in two blocks. First the data string block must be chosen and after that the desired data string.

2.1.1 Data String Block

DIP-Switch SW3 Pos. 7 selects the data string block.

DIP-Switch SW3 Pos. 7	Data String Block	
0 12345678	Data String Block A (default)	
 12345678	Data String Block B	

Please Note: IN CASE OF THE DATA STRING ABB-SPA THE DIP-SWITCH SW3 POS. 7 IS USED FOR THE FUNCTION "TRANSMISSION POINT OF SECOND STRING". THE BLOCK SELECTION HAS NO FUNCTION IN THE MODE ABB-SPA.

2.1.2 Data Strings

Possible settings by means of DIP-switch SW2 Pos 1 to 5.

Data String Block A (DIP-Switch SW3 Pos. 7 = off)					
	DIP-Switch SW2				
Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Data String
on	on	on	on	on	hopf Standard string (6021) - default
on	on	on	on	off	hopf Standard string time only
on	on	on	off	on	<i>hopf</i> 5500
on	on	on	off	off	hopf 5500 time only
on	on	off	on	on	H&B 5050 (PCZ77)
on	on	off	on	off	H&B 5050 time only
on	on	off	off	on	hopf 2000 - 4-digit year output
on	on	off	off	off	hopf 2000 - 4-digit year output, time only
on	off	on	on	on	<i>hopf</i> date / time
on	off	on	on	off	SINEC H1 Extended
on	off	on	off	on	MADAM S
on	off	on	off	off	SINEC H1
on	off	off	on	on	hopf DCF-Slave-String
on	off	off	on	off	T-String
on	off	off	off	on	hopf UTC-Slave
on	off	off	off	off	IBM Sysplex Timer 1+2
off	on	on	on	on	Sicomp M
off	on	on	on	off	H&B
off	on	on	off	on	hopf Master/Slave-String
off	on	on	off	off	ABB 23RC20
off	on	off	on	on	ABB-SPA
off	on	off	on	off	<i>hopf</i> Time Capture
off	on	off	off	on	MDR 2000
off	on	off	off	off	hopf Clock-Mouse
off	off	on	on	on	<i>hopf</i> Clock-Mouse with <o><cr></cr></o>
off	off	on	on	off	DCF77 pulse output
off	off	on	off	on	NMEA - GPRMC
off	off	on	off	off	DA55
off	off	off	on	on	OMS Synchro
off	off	off	on	off	CCTV
off	off	off	off	on	ABB Master Clock
off	off	off	off	off	IRIG J1x

Data String Block B (DIP-Switch SW3 Pos. 7 = on)					
DIP-Switch SW2					
Pos. 1	Pos. 2	Pos. 3	Pos. 4	Pos. 5	Data String
on	on	on	on	on	BEXBACH
on	on	on	on	off	NGTS
on	on	on	off	on	SAT 1703
on	on	on	off	off	free (<i>hopf</i> Standard string 6021 at present)
on	on	off	on	on	free (<i>hopf</i> Standard string 6021 at present)
on	on	off	on	off	free (<i>hopf</i> Standard string 6021 at present)
on	on	off	off	on	free (<i>hopf</i> Standard string 6021 at present)
on	on	off	off	off	free (<i>hopf</i> Standard string 6021 at present)
on	off	on	on	on	free (<i>hopf</i> Standard string 6021 at present)
on	off	on	on	off	free (<i>hopf</i> Standard string 6021 at present)
on	off	on	off	on	free (<i>hopf</i> Standard string 6021 at present)
on	off	on	off	off	free (<i>hopf</i> Standard string 6021 at present)
on	off	off	on	on	free (<i>hopf</i> Standard string 6021 at present)
on	off	off	on	off	free (<i>hopf</i> Standard string 6021 at present)
on	off	off	off	on	free (<i>hopf</i> Standard string 6021 at present)
on	off	off	off	off	free (<i>hopf</i> Standard string 6021 at present)
off	on	on	on	on	free (<i>hopf</i> Standard string 6021 at present)
off	on	on	on	off	free (<i>hopf</i> Standard string 6021 at present)
off	on	on	off	on	free (<i>hopf</i> Standard string 6021 at present)
off	on	on	off	off	free (<i>hopf</i> Standard string 6021 at present)
off	on	off	on	on	ABB-SPA
off	on	off	on	off	data string with microsecond
off	on	off	off	on	free (<i>hopf</i> Standard string 6021 at present)
off	on	off	off	off	free (<i>hopf</i> Standard string 6021 at present)
off	off	on	on	on	free (<i>hopf</i> Standard string 6021 at present)
off	off	on	on	off	free (<i>hopf</i> Standard string 6021 at present)
off	off	on	off	on	free (<i>hopf</i> Standard string 6021 at present)
off	off	on	off	off	free (<i>hopf</i> Standard string 6021 at present)
off	off	off	on	on	free (<i>hopf</i> Standard string 6021 at present)
off	off	off	on	off	free (<i>hopf</i> Standard string 6021 at present)
off	off	off	off	on	free (<i>hopf</i> Standard string 6021 at present)
off	off	off	off	off	free (<i>hopf</i> Standard string 6021 at present)
on	on	on	on	on	free (<i>hopf</i> Standard string 6021 at present)
on	on	on	on	off	free (<i>hopf</i> Standard string 6021 at present)
on	on	on	off	on	free (<i>hopf</i> Standard string 6021 at present)

2.2 Transmission with Control Characters

SW2 pos. 6	control character STX/ETX	
on	transmission with control characters	Standard
off	transmission without control characters	

Please Note: WHEN THE PULSE OUTPUT DCF77 IS SET THE SWITCHES POS 6-8 IN DIP-SWITCH 2 HAVE A DIFFERENT MEANING (SEE CHAPTER 3.24)

2.3 Transmission Point for the Data String

SW2 pos. 7	SW2 pos. 8	transmission point of time	
on	on	transmission every second	Standard
on	off	transmission on the minute change	
off	on	transmission on the hour change	
off	off	transmission on request	

Please Note: When the pulse output DCF77 is set the switches Pos 6-8 in DIP-Switch 2 Have a different meaning (see *Chapter 3.24*)

2.4 Transmission Delay

SW3 pos. 4	SW3 pos. 5	advance	ETX	transmission delay	
on	on	Off	immediately	off	Standard
on	off	On	immediately	off	
off	on	On	on secchange	off	
off	off	On	on secchange	on	

2.5 Data Format of the Serial Transmission

The data are transmitted in the ASCII format as BCD values using the following special characters:

- \$20 = Space
- \$0D = CR (carriage return)
- \$0A = LF (line feed)
- \$02 = STX (start of text)
- \$03 = ETX (end of text)

2.6 Serial Request

The user can start the data string output using control characters. These control characters are:

ASCII "**U**" -- for time ASCII "**D**" -- for time/date ASCII "**G**" -- for UTC-time/date

The system answers within 1 msec. with the according data string.

This is often too fast for the requesting computer. It is therefore possible to delay the answer in 10 msec. steps on request of the necessary software. To delay the transmission of the data string the small letters "u, d, g" are transmitted to the clock by the requesting computer with a two digit multiplication factor.

The multiplication factor is interpreted by the clock as hexadecimal values.

Example:

The computer sends	ASCII u05	(Hex 75, 30, 35)
The clock answers with th	e data string tim	e only after 50 milliseconds

The computer sends **ASCII gFF** (Hex 67, 46, 46) The clock sends the data string UTC time/date after 2550 milliseconds

In case of the set output "MADAM-S compatible" the output can be activated only by the following character sequences

	:ZSYS:
or	:WILA:

The system answers here on the next second change.

In case of the set output "Sysplex Timer" the output can be activated only by ASCII "C".

2.7 Selection of the Transmission Format by means of DIP-switch SW1

DIP-switch SW1 is used to set the baud rate, the word length, parity-mode and the stop-bits for the data transfer. The selected configuration applies to all 3 existing interfaces.

The different settings of the Dip-switches you can see in the location plan.

2.7.1 Output Local Time, Standard Time or UTC

The time basis for the output string can be selected by means of switch 1 / SW1 and switch 6 / SW3. Normally the local time is selected as time basis. But this time changes by one hour if changeovers from winter to summer time were programmed on the location. If time leaps are to be avoided standard time or UTC should be selected as time basis.

The standard time differs from the local summer time by minus 1 hour. The time progresses continuously through the year. In case of the setting UTC the global time (previously GMT) is used as time basis, which also progresses continuously through the year. Depending on the place of installation the time difference may vary by \pm 12 hours.

SW1 pos. 1	time	meaning	
on	UTC	SW3 / switch $6 = off$	
on	standard	SW3 / switch 6 = on	
off	local		Standard

2.7.2 Setting the Word Length

SW1 pos. 2	meaning	
on	8 data bit	Standard
off	7 data bit	

2.7.3 Setting the Parity-Mode of the Transmission

SW1 pos. 3	SW1 pos. 4	meaning	
on	on	no parity bit	Standard
on	off	no parity bit	
off	on	parity even	
off	off	parity odd	

2.7.4 Setting the Stop Bits

SW1 pos. 5	meaning	
on	1 stop bit	Standard
off	2 stop bit	

2.7.5 Setting the Baud rate

SW1 pos. 6	SW1 pos. 7	SW1 pos. 8	baud rate	
on	on	on	150 baud	
on	on	off	300 baud	
on	off	on	600 baud	
on	off	off	1200 baud	
off	on	on	2400 baud	
off	on	off	4800 baud	
off	off	on	9600 baud	Standard
off	off	off	19200 baud	

<u>3 Structure of Data Strings</u>

3.1 hopf Standard String (6021)

3.1.1 hopf Standard String - time and date (standard)

The control characters STX and ETX cannot be transmitted unless the output has been set "with control characters" at DIP-switch 2 (DIP-switch 2 switch 6 = on). Otherwise these control characters are left out. The setting "ETX delayed" transmits the last character (ETX) exactly on the next second change.

character no.	meaning
1	STX (start of text)
2	status (internal clock status)
3	day of the week (1=Monday 7=Sunday) for UTC time bit 3 is set to 1 in the day of the week
4	hour tens digit
5	hour unit digit
6	minute tens digit
7	minute unit digit
8	second tens digit
9	second unit digit
10	day tens digit
11	day unit digit
12	month tens digit
13	month unit digit
14	year tens digit
15	year unit digit
16	LF (line feed)
17	CR (carriage return)
18	ETX (end of text)

3.1.2 hopf Standard String - time only

The control characters STX and ETX cannot be transmitted unless the output has been set "with control characters" at DIP-switch 2 (DIP-switch 2 switch 6 = on). Otherwise these control characters are left out. The setting "ETX delayed" transmits the last character (ETX) exactly on the next second change.

character no.	meaning
1	STX (start of text)
2	hour tens digit
3	hour unit digit
4	minute tens digit
5	minute unit digit
6	second tens digit
7	second unit digit
8	LF (line feed)
9	CR (carriage return)
10	ETX (end of text)

3.1.3 Status and Day of the Week Nibble

The second and the third ASCII-character contain the status and the day of the week. The status is decoded binarily Structure of these characters :

	b3	b2	b1	b0	meaning
status nibble:	х	х	х	0	no announcement hour
	х	х	х	1	announcement(ST-WT-ST)
	х	х	0	х	standard time (WT)
	х	х	1	х	daylight saving time (ST)
	0	0	х	х	time / date invalid
	0	1	х	х	crystal operation
	1	0	х	х	radio operation
	1	1	х	х	radio operation (high accuracy)
day of the week nibble:	0	х	х	х	CEST / CET
	1	х	х	х	UTC - time
	х	0	0	1	Monday
	х	0	1	0	Tuesday
	х	0	1	1	Wednesday
	х	1	0	0	Thursday
	х	1	0	1	Friday
	х	1	1	0	Saturday
	х	1	1	1	Sunday

3.1.4 Example of transmitted Data String

(STX)E3123456030196(LF)(CR)(ETX)

radio operation (high accuracy) daylight saving time, no announcement It is Wednesday 03.01.96 - 12:34:56 h. () - ASCII-control characters e.g. (STX)

3.2 hopf 5500

3.2.1 hopf 5500 - Time and Date

The control characters STX and ETX cannot be transmitted unless the output has been set "with control characters" at DIP-switch 2 (DIP-switch 2 switch 6 = on). Otherwise these control characters are left out. The setting "ETX delayed" transmits the last character (ETX) exactly on the next second change.

character no.	meaning
1	STX (start of text)
2	status (internal clock status)
3	space
4	hour tens digit
5	hour unit digit
6	minute tens digit
7	minute unit digit
8	second tens digit
9	second unit digit
10	space
11	day tens digit
12	day unit digit
13	month tens digit
14	month unit digit
15	year tens digit
16	year unit digit
17	space
18	day of the week
19	CR (carriage return)
20	LF (line feed)
21	ETX (end of text)

3.2.2 hopf 5500 - Time only

The control characters STX and ETX cannot be transmitted unless the output has been set "with control characters" at DIP-switch 2 (DIP-switch 2 switch 6 = on). Otherwise these control characters are left out. The setting "ETX delayed" transmits the last character (ETX) exactly on the next second change.

character no.	meaning
1	STX (start of text)
2	hour tens digit
3	hour unit digit
4	minute tens digit
5	minute unit digit
6	second tens digit
7	second unit digit
8	CR (carriage return)
9	LF (line feed)
10	ETX (end of text)

3.2.3 Status and Day of the Week Nibble

	b3	b2	b1	b0	meaning
status nibble:	х	х	х	0	radio operation
	х	х	х	1	crystal operation
	х	х	0	х	no announcement WT-ST-WT
	х	х	1	х	announcement WT-ST-WT
	х	0	х	х	standard time
	х	1	х	х	daylight saving time
	1	0	0	х	UTC
day of the week nibble:	х	0	0	1	Monday
	х	0	1	0	Tuesday
	х	0	1	1	Wednesday
	х	1	0	0	Thursday
	х	1	0	1	Friday
	х	1	1	0	Saturday
	х	1	1	1	Sunday

3.2.4 Example of a transmitted Data String

(STX)1 123456 030196 3(CR)(LF)(ETX)

crystal operation, no announcement, standard time It is Wednesday 03.01.96 - 12:34:56 h

3.3 H&B 5050 (PCZ77)

3.3.1 H&B 5050 - Time and Date

The control characters STX and ETX cannot be transmitted unless the output has been set "with control characters" at DIP-switch 2 (DIP-switch 2 switch 6 = on). Otherwise these control characters are left out. The setting "ETX delayed" transmits the last character (ETX) exactly on the next second change.

character no.	meaning
1	STX (start of text)
2	hour tens digit
3	hour unit digit
4	space
5	minute tens digit
6	minute unit digit
7	space
8	second tens digit
9	second unit digit
10	space
11	day tens digit
12	day unit digit
13	space
14	month tens digit
15	month unit digit
16	space
17	year tens digit
18	year unit digit
19	space
20	status: internal clock status
21	day of the week
22	space
23	CR (carriage return)
24	LF (line feed)
25	ETX (end of text)

3.3.2 H&B 5050 - Time only

character no.	meaning	
1	STX (start of text)	
2	hour tens digit	
3	hour unit digit	
4	space	
5	minute tens digit	
6	minute unit digit	
7	space	
8	second tens digit	
9	second unit digit	
10	space	
11	CR (carriage return)	
12	LF (line feed)	
13	ETX (end of text)	

3.3.3 Status and Day of the Week Nibble

	b3	b2	b1	b0	meaning
status nibble:	х	х	х	0	radio operation
	х	х	х	1	crystal operation
	х	х	1	х	announcement (WT - ST - WT)
	х	х	0	х	no announcement (WT - ST - WT)
	х	0	х	х	CET (UTC + 1h)
	х	1	х	х	CEST (UTC + 2h)
	1	0	0	х	UTC
day of the week nibble:	х	0	0	1	Monday
	х	0	1	0	Tuesday
	х	0	1	1	Wednesday
	х	1	0	0	Thursday
	х	1	0	1	Friday
	х	1	1	0	Saturday
	х	1	1	1	Sunday

3.3.4 Example of a transmitted Data String

(STX) 12 34 56 03 01 96 03 (CR)(LF)(ETX)

radio operation, no announcement, standard time It is Wednesday 03.01.96 - 12:34:56 h

<u>3.4 MADAM-S</u>

The structure depends on the request string. When the superior computer (PROMEA-MX) requests with the string:

:ZSYS:

the clock answers with the following data string:

character no.	meaning	value (value range)
1	STX (start of text)	\$02
2	: colon	\$3A
3	Z ASCII Z	\$5A
4	S ASCII S	\$53
5	Y ASCII Y	\$59
6	S ASCII S	\$53
7	: colon	\$3A
8	status of the changeover	\$00, 01, 7F
9	time scale identification	\$30-33
10	day of the week	\$31-37
11	tens year	\$30-39
12	unit year	\$30-39
13	tens month	\$30-31
14	unit month	\$30-39
15	tens day	\$30-33
16	unit day	\$30-39
17	tens hour	\$30-32
18	unit hour	\$30-39
19	tens minute	\$30-35
20	unit minute	\$30-39
21	tens second	\$30-35
22	unit second	\$30-39
23	CR (carriage return)	\$0D
24	LF (line feed)	\$0A
25	ETX (end of text)	\$03

When the superior computer (PROMEA-MX) requests using the string

:WILA:

the clock answers with the following data string

character no.	meaning	value (value range)
1	STX (start of text)	\$02
2	: colon	\$3A
3	W ASCII W	\$57
4	I ASCIII	\$49
5	L ASCII L	\$4C
6	A ASCII A	\$41
7	: colon	\$3A
8	status	\$00, 01, 7F
9	time scale ident.	\$30-33
10	day of the week	\$31-37
11	tens year	\$30-39
12	unit year	\$30-39
13	tens month	\$30-31
14	unit month	\$30-39
15	tens day	\$30-33
16	unit day	\$30-39
17	tens hour	\$30-32
18	unit hour	\$30-39
19	tens minute	\$30-35
20	unit minute	\$30-39
21	tens second	\$30-35
22	unit second	\$30-39
23	CR (carriage Return)	\$0D
24	LF (line feed)	\$0A
25	ETX (end of text)	\$03

3.4.1 Required setting in case of output MADAM-S

The synchronisation process in case of output MADAM-S requires the following setting on the board:

- output on the minute change
- output with second advance
- output ETX on the second change
- output with control characters
- output CR/LF

3.4.2 Status Nibble

Announcement of a changeover (8. byte of the transmission)

This byte can have the following values

Nul (Hex 00)	no announcement
SOH (Hex 01)	announcement changeover
	daylight saving time / standard time
	standard time / daylight saving time
DEL (Hex 7F)	no radio time available

time scale ident. (9. Byte of the transmission)

ASCII 0 (Hex 30)	standard time
ASCII 1 (Hex 31)	daylight saving time + announcement
ASCII 3 (Hex 33)	daylight saving time

The day of the week nibble can have the values

ASCII 1 (Hex 31 ⇔ MO) to ASCII 7 (Hex 37 ⇔ SO)

In case of an invalid time the byte with ASCII 0 (Hex 30) is transmitted.

<u>3.5 SINEC H1</u>

The control characters STX and ETX cannot be transmitted unless the output has been set "with control characters" at DIP-switch 2 (DIP-switch 2 switch 6 = on). Otherwise these control characters are left out. The setting "ETX delayed" transmits the last character (ETX) exactly on the next second change.

character no.	meaning	value (value range)
1	STX (start of text)	\$02
2	"D" ASCII D	\$44
3	":" colon	\$3A
4	tens day	\$30-33
5	unit day	\$30-39
6	"." point	\$2E
7	tens month	\$30-31
8	unit month	\$30-39
9	"." point	\$2E
10	tens year	\$30-39
11	unit year	\$30-39
12	";" semicolon	\$3B
13	"T" ASCII T	\$54
14	":" colon	\$3A
15	day of the week	\$31-37
16	";" semicolon	\$3B
17	"U" ASCII U	\$55
18	":" colon	\$3A
19	tens hour	\$30-32
20	unit hour	\$30-39
21	"." point	\$2E
22	tens minute	\$30-35
23	unit minutes	\$30-39
24	"." point	\$2E
25	tens second	\$30-36
26	unit second	\$30-39
27	";" semicolon	\$3B
28	"#" or space	\$23 / \$20
29	"*" or space	\$2A / \$20
30	"S" or space	\$53 / \$20
31	"!" or space	\$21 / \$20
32	ETX (end of text)	\$03

<u>3.5.1 Status</u>

The characters 28 - 31 in the data string SINEC H1 tell the synchronisation status of the clock.

The characters mean the following:

character no. 28 = "#" space	no radio synchronisation after reset, time invalid radio synchronisation after reset, clock in crystal operation
character no. 29 = "*"	time from internal crystal in the clock
space	time by radio reception
character no. 30 = "S"	daylight saving time
space	standard time
character no. 31 = "!" space	announcement of a W/S or S/W changeover no announcement

3.5.2 Example of a transmitted Data String

(STX)D:03.01.96;T:3;U:12.34.56; ____(ETX) (_) = space

radio operation, no announcement, standard time It is Wednesday 03.01.96 - 12:34:56 h

3.5.3 String request

The data string SINEC H1 can also send by request. The time of output will be set to "send only by request" and the string will be requested with the ASCII character "?".

3.6 hopf DCF-Slave

This data string is used for the synchronisation of *hopf* DCF-Slave systems. It is the same string as the data string 7001/6021, there is only a difference in the status byte.

character no.	meaning	value (value range)
1	STX (start of text)	\$02
2	status	\$30-39, \$41-46
3	day of the week	\$31-37
4	tens hour	\$30-32
5	unit hour	\$30-39
6	tens minute	\$30-35
7	unit minute	\$30-39
8	tens second	\$30-36
9	unit second	\$30-39
10	tens day	\$30-33
11	unit day	\$30-39
12	tens month	\$30-31
13	unit month	\$30-39
14	tens year	\$30-39
15	unit year	\$30-39
16	LF (line feed)	\$0A
17	CR (carriage return)	\$0D
18	ETX (end of text)	\$03

3.6.1 Status and Day of the Week Nibble

	b3	b2	b1	b0	meaning
status nibble:	х	х	х	0	no announcement hour
	х	х	х	1	announcement (ST-WT-ST)
	х	х	0	х	standard time (WT)
	х	Х	1	х	daylight saving time (ST)
	х	0	х	х	no announcement second
	х	1	х	х	announcement second
	0	Х	х	х	crystal operation
	1	Х	х	х	radio operation
day of the week nibble:	0	0	0	1	Monday
	0	0	1	0	Tuesday
	0	0	1	1	Wednesday
	0	1	0	0	Thursday
	0	1	0	1	Friday
	0	1	1	0	Saturday
	0	1	1	1	Sunday

3.6.2 Example of a transmitted Data String

(STX)83123456030196(LF)(CR)(ETX)

radio operation, no announcement, standard time It is Wednesday 03.01.96 - 12:34:56 h

3.6.3 Set-up

To synchronise the *hopf* Slave-systems the following setting are kept:

- output every minute
- output second advanced
- ETX at second change; selectable: data string at the beginning or at the end of the 59. second.
- UTC or local time
- word length 8 Bit
- parity no
- baud rate 9600

Use these settings for an optimal regulation of the time base into the slave-systems.

3.7 hopf UTC-Slave

This string is used when **hopf** clock systems are to run completely on UTC time. The difference time is included in the transmission of the string to calculate the local time. If the local time is positive compared to the UTC time the top bit is set into the "tens hour".

e.g. CET + 1 h compared to UTC, the value 81 is transmitted in the hours.

character no.	meaning	value (value range)
1	STX (start of text)	\$02
2	Status	\$30-39, \$41-46
3	day of the week	\$39, \$41-46
4	tens hour	\$30-32
5	unit hour	\$30-39
6	tens minute	\$30-35
7	unit minute	\$30-39
8	tens second	\$30-36
9	unit second	\$30-39
10	tens day	\$30-33
11	unit day	\$30-39
12	tens month	\$30-31
13	unit month	\$30-39
14	tens year	\$30-39
15	unit year	\$30-39
16	tens difference hour	\$30,31,38,39
17	unit difference hour	\$30-39
18	tens difference minute	\$30-35
19	unit difference minute	\$30-39
20	LF (line feed)	\$0A
21	CR (carriage return)	\$0D
22	ETX (end of text)	\$03

3.7.1 Status and Day of the Week Nibble

	b3	b2	b1	b0	meaning
status nibble:	х	Х	х	0	no announcement hour
	х	х	х	1	announcement (ST-WT-ST)
	х	х	0	х	standard time (WT)
	х	х	1	х	daylight saving time (ST)
	х	0	х	х	no announcement second
	х	1	х	х	announcement second
	0	х	х	х	crystal operation
	1	х	х	х	radio operation
day of the week nibble:	1	0	0	1	Monday
	1	0	1	0	Tuesday
	1	0	1	1	Wednesday
	1	1	0	0	Thursday
	1	1	0	1	Friday
	1	1	1	0	Saturday
	1	1	1	1	Sunday

3.7.2 Setting

The following setting are kept to synchronise the *hopf* slave-systems:

- output every minute
- output second advance
- ETX on the second change; selectable: data string at the beginning or at the end of the 59. second.
- UTC or local time
- word length 8 bit
- no parity
- baud rate 9600

This setting guarantees the best control of the time base in the slave systems.

3.8 Data String T-String

The T-String will sent minutely in the sixtieth second to the Slave-clocks. He contains the complete information of a full minute. After sending "LF" the data string will be processed internal and the millisecond counter will set to "1".

character no.	meaning	value (value range)
1	"T" ASCII T	\$54
2	":" colon	\$3A
3	tens year	\$30-39
4	unit year	\$30-39
5	":" colon	\$3A
6	tens month	\$30-31
7	unit month	\$30-39
8	":" colon	\$3A
9	tens day	\$30-33
10	unit day	\$30-39
11	":" colon	\$3A
12	tens day of the week	\$30
13	unit day of the week	\$31-37
14	":" colon	\$3A
15	tens hour	\$30-32
16	unit hour	\$30-39
17	":" colon	\$3A
18	tens minute	\$30-35
19	unit minute	\$30-39
20	":" colon	\$3A
21	tens second	\$30-36
22	unit second	\$30-39
23	CR (carriage return)	\$0D
24	LF (line feed)	\$0A

3.8.1 Example of a transmitted Data String

T:96:01:03:03:12:34:56(CR)(LF)

It is Wednesday 03.01.96 - 12:34:56 h

3.9 hopf Date / Time

3.9.1 hopf Date / Time - date and time

The control characters STX and ETX cannot be transmitted unless the output has been set "with control characters" at DIP-switch 2 (DIP-switch 2 switch 6 = on). Otherwise these control characters are left out. The setting "ETX delayed" transmits the last character (ETX) exactly on the next second change.

character no.	meaning
1	STX (start of text)
2	year tens digit
3	year unit digit
4	month tens digit
5	month unit digit
6	day tens digit
7	day unit digit
8	hour tens digit
9	hour unit digit
10	minute tens digit
11	minute unit digit
12	second tens digit
13	second unit digit
14	ETX (end of text)

3.9.2 Example of transmitted Data String

(STX) 960103123456 (ETX)

daylight saving time, no announcement It is Wednesday 03.01.96 - 12:34:56 h. () - ASCII-control characters e.g. (STX)

3.10 SINEC H1 Extended

The control characters STX and ETX are transmitted only if the output is set "with control characters". Otherwise there are no control characters. In case of the setting "ETX delayed" the last character (ETX) is transmitted exactly on the next second change.

The data string SINEC H1 can also transmitted on request (Set-up: "Transmission on Request"). The data string can be requested by "?".

character no.	meaning	value (value range)
1	STX (start of text)	\$02
2	"D" ASCII D	\$44
3	":" colon	\$3A
4	tens day	\$30-33
5	unit day	\$30-39
6	"." point	\$2E
7	tens month	\$30-31
8	unit month	\$30-39
9	"." point	\$2E
10	tens year	\$30-39
11	unit year	\$30-39
12	";" semicolon	\$3B
13	"T" ASCII T	\$54
14	":" colon	\$3A
15	day of the week	\$31-37
16	";" semicolon	\$3B
17	"U" ASCII U	\$55
18	":" colon	\$3A
19	tens hours	\$30-32
20	unit hours	\$30-39
21	"." point	\$2E
22	tens minute	\$30-35
23	unit minute	\$30-39
24	"." point	\$2E
25	tens seconds	\$30-36
26	unit seconds	\$30-39
27	";" semicolon	\$3B
28	"#" or space	\$23 / \$20
29	"*" or space	\$2A / \$20
30	"S", "U" or space	\$53 / \$55 / \$20
31	"!", "A" or space	\$21 / \$41 / \$20
32	ETX (end of text)	\$03

<u>3.10.1 Status</u>

The characters 28-31 in the data string SINEC H1 Extended give information about the synchronisation status of the clock.

meaning of the following:

character no.:28 = "#" space	no radio synchronisation after reset, time invalid radio synchronisation after reset, clock at least in crystal operation			
character no.: 29 = "*"	time from the internal crystal			
space	time from radio reception			
character no.: 30 = "S"	daylight saving time			
"U"	UTC (see chapter 2.7.1)			
space	standard time			
character no.: 31 = "!"	announcement of a W/S or S/W changeover			
"A"	announcement of a leap second			
space	no announcement			

3.10.2 Example of a Transmitted Data String

(STX)D:03.01.96;T:3;U:12.34.56; _ _ _ (ETX) (_) = Space

radio operation, no announcement, standard time It is Wednesday 03.01.96 - 12:34:56 h

3.11 hopf 2000 - 4-Digit Year Output

3.11.1 hopf 2000 with a 4 Digit Year Output

The control characters STX and ETX cannot be transmitted unless the output has been set "with control characters" at DIP-switch 2 (DIP-switch 2 switch 6 = on). Otherwise these control characters are left out. The setting "ETX delayed" transmits the last character (ETX) exactly on the next second change.

character no.	meaning					
1	STX (start of text)					
2	status (internal clock status)					
3	day of the week (1=Monday 7=Sunday) for UTC time bit 3 is set to 1 in the day of the week					
4	hour tens digit					
5	hour unit digit					
6	minute tens digit					
7	minute unit digit					
8	second tens digit					
9	second unit digit					
10	day tens digit					
11	day unit digit					
12	month tens digit					
13	month unit digit					
14	year thousand digit					
15	year hundred digit					
16	year tens digit					
17	year unit digit					
18	LF (line feed)					
19	CR (carriage return)					
20	ETX (end of text)					

3.11.2 Status and Day of the Week Nibble

The second and the third ASCII-character contain the status and the day of the week. The status is decoded binarily. Structure of these characters :

	b3	b2	b1	b0	meaning
status nibble:	х	х	х	0	no announcement hour
	х	х	х	1	announcement (ST-WT-ST)
	х	х	0	х	standard time (WT)
	х	х	1	х	daylight saving time (ST)
	0	0	х	х	time / date invalid
	0	1	х	х	crystal operation
	1	0	х	х	radio operation
	1	1	х	х	radio operation (high accuracy)
day of the week nibble:	0	Х	х	Х	CEST / CET
	1	х	х	х	UTC - time
	х	0	0	1	Monday
	х	0	1	0	Tuesday
	х	0	1	1	Wednesday
	х	1	0	0	Thursday
	х	1	0	1	Friday
	х	1	1	0	Saturday
	х	1	1	1	Sunday

3.11.3 Example of transmitted Data String

(STX)E312345603011996(LF)(CR)(ETX)

radio operation (high accuracy) daylight saving time, no announcement It is Wednesday 03.01.1996 - 12:34:56 h. () - ASCII-control characters e.g. (STX)

3.12 IBM Sysplex Timer Model 1+2

This protocol is used for the synchronization of an IBM 9037 Sysplex Timer. The 9037 expects the time at its input every second.

The following settings are required:

- baud rate 9600
- 8 data bit
- parity odd
- 1 stop bit
- sending on request without advance and without control characters

While starting the Sysplex Timer the ASCII-sign "C" is sent to the connected radio controlled clock. The listed protocol in the table is automatically given out every second by that.

The setting UTC or local time is optional.

character no.	meaning	value (value range)
1	SOH (start of header)	\$02
2	hundreds current day of the ye	ear \$30-33
3	tens current year	\$30-39
4	unit current year	\$30-39
5	":" colon	\$3A
6	tens hour	\$30-32
7	unit hour	\$30-39
8	":" colon	\$3A
9	tens minute	\$30-35
10	unit minute	\$30-39
11	":" colon	\$3A
12	tens second	\$30-35
13	unit second	\$30-39
14	Quality Identifier	\$20, 41, 42, 43, 58
15	CR (carriage return)	\$0D
16	LF (line feed)	\$0A

3.12.1 Status

The 14th character informs about the synchronisation status of the clock. Possible values and their meaning are listed below.

"?"	=	question mark	=	no radio controlled time
" "	=	space	=	radio controlled time at hand
"A"	=	Hex 41	=	crystal operation for more than 20 minutes
"B"	=	Hex 42	=	crystal operation for more than 41 minutes
"C"	=	Hex 43	=	crystal operation for more than 416 minutes
"X"	=	Hex 58	=	crystal operation for more than 4160 minutes

3.12.2 Example of a transmitted Data String

(SOH)050:12:34:56 _ (CR) (LF) (_) = Space

radio operation, 12:34:56 h, 50th day of the year

<u>3.13 NTP (Network Time Protocol)</u>

NTP or also xNTP is a batch of programmes to synchronise different computers and operating systems with network support. It is the standard for the Internet Protocol TCP/IP (RFC-1305). Source code and documentation are available as freeware in the internet under the following address:

http://www.eecis.udel.edu/~ntp/index.html

NTP supports the *hopf* standard string (6021) described under *chapter 3.1*. The following adjustments must be made on the board 7201:

parameter of transmission:

- baud rate 9600
- 8 data bit
- parity no
- 1 stop bit

mode of transmission:

- Data String 7001/6021
- UTC as time base
- second in advance = on
- control character (STX...ETX) enabled
- with ETX as On Time Mark
- Output time and date
- output every second

3.14 TimeServ for the Operating System Windows NT

The synchronization of a Computer running Windows NT version 3.51 and higher is done with the same string as described under pt. **"Sysplex Timer"**.

The Dip-Switch setting on the board 7201 must match the following items:

- telegram Sysplex Timer
- transmission every second
- baud rate 9600
- 8 data bit
- no parity
- 1 stop bit
- without second advance
- transmission without control characters
- output UTC

To install TimeServ on the WinNT-computer you need the program files which can be found on the Microsoft Windows NT Recource Kit CD. The newest version of the program is although available free of charge on the Microsoft Internet site:

ftp://ftp.microsoft.com/bussys/winnt/winnt-public/reskit/nt40

<u>3.15 Sicomp M</u>

The following string is used for the synchronisation of Sicomp M systems. The string is set-up by DIP-Switch 2+3.

The following parameters are chosen for the data transmission:

- baud rate 9600
- 8 data bit
- parity odd
- 1 stop bit
- Output every minute

The control characters STX and ETX are only transmitted, if the output by DIP-switch 2 is set to "with control characters". In the other case these control character are omitted. By the settings "ETX delayed" the last character (ETX) is transmitted exactly on the next second change.

character no.	meaning	value (value range)
1	STX	\$02
2	":" colon	\$3A
3	" 3 " DCF77-code	\$33
4	" 4 " DCF77-code	\$34
5	":" colon	\$3A
6	tens year	\$30-39
7	unit year	\$30-39
8	tens month	\$30-31
9	unit month	\$30-39
10	tens day of the week	\$30
11	unit day of the week	\$31-37
12	tens day	\$30-33
13	unit day	\$30-39
14	tens hour	\$30-32
15	unit hour	\$30-39
16	tens minute	\$30-35
17	unit minute	\$30-39
18	tens second	\$30-36
19	unit second	\$30-39
20	status	\$32-35, \$43
21	error status	\$31-39, \$41-46
22	CR (carriage return)	\$0D
23	LF (line feed)	\$0A
24	ETX (end of text)	\$03

3.15.1 Status

The status is built up with 4 bits and the following valency:

b3 = 1	Announcement switching second
b2 = 1	standard time (CET)
b1 = 1	daylight saving time (CEST)
10 4	A

b0 = 1 Announcement time zone switch-over

In case of radio reception the error counter is set to 1 and runs max. to F (\$31-39, \$41-46). It indicates the time how long the radio reception has been interrupted.

<u>3.16 H&B</u>

In this data string the time, date and a status byte are transmitted in the following order:

character no.	meaning			
1	tens hour			
2	unit hour			
3	space			
4	tens minute			
5	unit minute			
6	space			
7	tens second			
8	unit second			
9	space			
10	tens day			
11	unit day			
12	space			
13	tens month			
14	unit month			
15	space			
16	tens year			
17	unit year			
18	space			
19	status: internal clock status			
20	day of the week			
21	CR (carriage return)			
22	LF (line feed)			

Please Note:	THE TRANSMISSION TAKES PLACE WITH ONE SECOND ADVANCE. THE LAST CHAR-
	ACTER "LINE FEED" TAKES PLACE AT THE NEXT SECOND CHANGE AND THE VALUES
	ARE SET VALID. THE SWITCHES SW3 POS. 4 AND 5 MUST BE SET APPROPRIATE.

3.16.1 Status and Day of the Week Nibble

	b3	b2	b1	b0	meaning
status nibble:	х	х	х	0	radio operation
	х	х	х	1	crystal operation
	х	х	1	х	announcement (ST-WT-ST)
	х	х	0	х	no announcement (ST-WT-ST)
	х	0	х	х	MEZ (UTC + 1h)
	х	1	х	х	MESZ (UTC + 2h)
	1	0	0	х	UTC
day of the week nibble:	х	0	0	1	Monday
	х	0	1	0	Tuesday
	х	0	1	1	Wednesday
	х	1	0	0	Thursday
	х	1	0	1	Friday
	х	1	1	0	Saturday
	х	1	1	1	Sunday

3.16.2 Example of a transmitted Data String

(STX) 12 34 56 03 01 96 03(CR)(LF)

crystal operation, no announcement, standard time It is Wednesday 03.01.96 - 12:34:56 h.

3.17 hopf Master/Slave

This Master/Slave string can be used to synchronise slave systems with the time data of the master system up to an accuracy of ± 0.5 msec. It differs from the DCF-slave-string in as much as the UTC time is included in the transmission.

The difference time is transmitted in hours and minutes following the year. The transmission is done in BCD. The difference time may be up to \pm 11.59 h.

The sign is shown as the highest bit in the hours.

logic "1" = local time before UTC logic "0" = local time after UTC

Example :

90.00	difference time + 10.00 h.
01.30	difference time – 01.30 h.

The whole data string shows the following structure:

character no.	meaning	value (value range)
1	STX (start of text)	\$02
2	status	\$30-39,\$41-46
3	day of the week	\$31-37
4	tens hour	\$30-32
5	unit hour	\$30-39
6	tens minute	\$30-35
7	unit minute	\$30-39
8	tens second	\$30-36
9	unit second	\$30-39
10	tens day	\$30-33
11	unit day	\$30-39
12	tens month	\$30-31
13	unit month	\$30-39
14	tens year	\$30-39
15	unit year	\$30-39
16	tens diff.time a. sign hour	\$30-31,\$38-39
17	unit diff.time a. sign hour	\$30-39
18	tens diff. time minutes	\$30-35
19	unit diff. time minutes	\$30-39
20	LF (line feed)	\$0A
21	CR (carriage Return)	\$0D
22	ETX (end of text)	\$03

3.17.1 Status and Day of the Week Nibble

	b3	b2	b1	b0	meaning
status nibble:	х	х	х	0	no announcement hour
	х	х	х	1	announcement (ST-WT-ST)
	х	х	0	х	standard time (WT)
	х	х	1	х	daylight saving time(ST)
	х	0	х	х	no announcement leap second
	х	1	х	х	announcement leap second
	0	х	х	х	crystal operation
	1	х	х	х	radio operation
day of the week nibble	0	0	0	1	Monday
	0	0	1	0	Tuesday
	0	0	1	1	Wednesday
	0	1	0	0	Thursday
	0	1	0	1	Friday
	0	1	1	0	Saturday
	0	1	1	1	Sunday

3.17.2 Example of a Transmitted Data String

(STX)831234560301968230(LF)(CR)(ETX)

Radio operation, no announcement, standard time It is Wednesday 03.01.96 - 12:34:56 h The difference to UTC is +2.30 hours

3.17.3 Settings

The following settings are required for the synchronisation of the *hopf* slave-systems:

- output every minute
- output second advance
- ETX on the second change; selectable: data string at the beginning or at the end of the 59. second.
- 9600 baud, 8 bit, 1 stop bit, no parity

This setting guarantees the best control of the time basis in the slave systems.

Please Note: IN CASE OF MASTER/SLAVE-STRING THESE SETTINGS ARE FIXED INDEPENDENTLY OF THE ACTUAL DIP-SWITCH SETTINGS.

3.18 hopf Time Capture (Board 7201 only)

The output of the data string can only be activated via the pulse input of the 25-pole SUB-D connector. For this either the 5 or the 24 Volt input must be connected to a suitable source of signal. The polarity of the pulse input can be selected by the DIP switch 3 switch 7.

DIP switch block 3

switch 7	meaning
on	falling edge releases measuring
off	rising edge releases measuring

Please Note: IF THE *hopf* TIME CAPTURE IS SET THE PULSE INPUT MUST BE WIRED-UP. OTHERWISE THERE MAY BE MALFUNCTIONS IN THE DATA OUTPUT (OPEN INPUT).

wiring of the pulse input		
pin 16	+ 24 Volt	
pin 17	GND	
pin 18 + 5 Volt		

A signal edge at the input releases an intermediate measuring of time. Up to 20 measurings at short intervals (200 µsec) are possible. The values are stored in a FIFO memory precisely to the microsecond and putout in consecutive order on the serial data line. If the memory is full the subsequent measurings are ignored until the present data are putout via the serial interface.

The accuracy of the measuring depends on the synchronisation status of the clock system. To avoid faulty measurings they should not be carried out during synchronisation (see pt. synchronisation of the clock system 7001 - status byte of the output data string)

The data are putout in the following string:

character no .:	meaning	value (value range)
1	STX (start of text)	\$02
2	status	\$30-39, \$41-46
3	day of the week	\$31-37
4	" " space	\$20
5	tens hour	\$30-32
6	unit hour	\$30-39
7	":" colon	\$3A
8	tens minute	\$30-35
9	unit minute	\$30-39
10	":" colon	\$3A
11	tens second	\$30-35
12	unit second	\$30-39
13	":" colon	\$3A
14	hundred digit millisecond	\$30-39
15	tens millisecond	\$30-39
16	unit millisecond	\$30-39
17	"." point	\$2E
18	hundred digit microsecond	\$30-39
19	tens microsecond	\$30-39
20	unit microsecond	\$30-39
21	"." point	\$2E
22	tens day	\$30-33
23	unit day	\$30-39
24	"." point	\$2E
25	tens month	\$30-31
26	unit month	\$30-39
27	"." point	\$2E
28	thousand digit year	\$31, \$32
29	hundred digit year	\$30, \$39
30	tens year	\$30-39
31	unit year	\$30-39
32	LF (line feed)	\$0A
33	CR (carriage return)	\$0D
34	ETX (end of text)	\$03

3.19 ABB 23RC20

This data string is pre-set as follows:

- 8 data bit
- parity even
- 1 stop bit

The baud rate should be 2400 baud but a different rate can be selected.

The data string is started 2 seconds after every minute change. The content of the data string is the time on the next minute change. The data are put out coded binarily.

The complete data string has the following structure:

character no .:	meaning	value (value range)
1	status	\$00-FF
2	second	\$00
3	minute	\$00-3B
4	hour	\$00-17
5	day	\$01-1F
6	month	\$01-0C
7	year	\$00-63

3.19.1 Status

Bit	meaning
Bit 0 = 1	synchronous with Mainflingen
Bit 1 = 1	not synchronous with Mainflingen
Bit 2 = 1	no reception for more than 5 minutes, but less than 2.5h
Bit 3 = 1	no reception for more than 2.5h
Bit 4 =	no meaning
Bit 5 = 1	announcement daylight saving / standard time or standard / daylight saving time on the next hour change
Bit 6 = 1	daylight saving time (=0: standard time)
Bit 7 =	no meaning

3.20 ABB-SPA Seconds-Clock

The date and time data string fades over the seconds data string when the output time is the same. In case of the setting "without checksum" the ASCII characters for XX are transmitted instead of the checksum. The putout milliseconds state the (calculated) transmission time of the last character of the string.

Altered Function of the Dip-switch SW3:

SW3 switch 3	separator	
off	dot between day and hour	
on	space between day and hour	

SW3 switch 4	checksum
off	with checksum
on	no checksum with ASCII character (XX)

SW3 switch 5	SW3 switch 6	output point of time/date string
off	off	6 and 18 o'clock
off	on	every hour
on	off	every 30 minutes
on	on	every minute

SW3 switch 7	SW3 switch 8	output point of seconds string
off	off	every minute
off	on	every 30 seconds
on	off	every 10 seconds
on	on	every second

Please Note: ONLY THE OUTPUT OF THE LOCAL TIME OR UTC TIME IS POSSIBLE IN THE DATA STRING ABB-SPA. THE OUTPUT OF LOCAL STANDARD TIME IS NOT POSSIBLE.

Altered Function of the Dip-switch SW1:

SW1 switch 1	time output	
off	local time	
on	UTC	

3.20.1 Seconds String

character no .:	meaning	value (value range)
1	ASCII-character >	\$3E
2	ASCII-character 9	\$39
3	ASCII-character 0	\$30
4	ASCII-character 0	\$30
5	ASCII-character W	\$57
6	ASCII-character T	\$54
7	ASCII-character :	\$3A
8	tens second	\$30-36
9	unit second	\$30-39

10	ASCII-character.	\$2E
11	1/10 second	\$30-39
12	1/100 second	\$30-39
13	1/1000 second	\$30-39
14	ASCII-character :	\$3A
15	checksum H-nibble	\$30-3F, \$58
16	checksum L-nibble	\$30-3F, \$58
17	CR (carriage return)	\$0D

3.20.2 Time Data String Date and Time

character no .:	meaning	value (value range)
1	ASCII-character >	\$3E
2	ASCII-character 9	\$39
3	ASCII-character 0	\$30
4	ASCII-character 0	\$30
5	ASCII-character W	\$57
6	ASCII-character D	\$54
7	ASCII-character :	\$3A
8	tens year	\$30-39
9	unit year	\$30-39
10	ASCII-character -	\$2D
11	tens month	\$30-31
12	unit month	\$30-39
13	ASCII-character -	\$2D
14	tens day	\$30-33
15	unit day	\$30-39
16	ASCII-character .	\$2E
17	tens hour	\$30-32
18	unit hour	\$30-39
19	ASCII-character .	\$2E
20	tens minute	\$30-35
21	unit minute	\$30-39
22	ASCII-character ;	\$3B
23	tens second	\$30-36
24	unit second	\$30-39
25	ASCII-character .	\$2E
26	1/10 second	\$30-39
27	1/100 second	\$30-39
28	1/1000 second	\$30-39
29	ASCII-character :	\$3A
30	checksum H-nibble	\$30-3F, \$58
31	checksum L-nibble	\$30-3F, \$58
32	CR (carriage return)	\$0D

<u>3.21 MDR 2000</u>

This data string serves to synchronise the Atis tape recorders MDR 2000 and MDD500.

The parameter for the serial interface must be set as follows:

- baud rate: 9600 Baud
- data format: 7 Bit
- 2 stop bits
- parity: even
- handshake: no
- control characters: yes
- sequence for CR / LF: SW3 switch 8 off
- synchronisation: every minute, local time, without time advance, output immediately

Please Note: SW3 SWITCHES 4 AND 5 ARE EXCLUDED. DELAY OF TRANSMISSION AND ADVANCE CANNOT BE ALTERED.

The data string is structured as follows:

character no .:	meaning valu	<u>e (value range)</u>
1	ADR. Recorder transmission head	\$7F
2	0"	\$30
3	0"	\$30
4	S"	\$53
5	Α"	\$41
6	status	\$30-39, 41-46
7	tens year	\$30-39
8	unit year	\$30-39
9	tens month	\$30-31
10	unit month	\$30-39
11	tens day	\$30-33
12	unit day	\$30-39
13	tens hour	\$30-32
14	unit hour	\$30-39
15	tens minute	\$30-35
16	unit minute	\$30-39
17	tens second	\$30-36
18	unit second	\$30-39
19	day of the week	\$31-37
20	checksum H-Nibble	\$30-39, 41-46
21	checksum L-Nibble	\$30-39, 41-46
22	reception address	\$7F
23	CR (carriage return)	\$0D

A checksum controls the transmitted data string. It is made up by adding all the transmitted ASCII characters from 1-20. The low byte of the sum is transmitted (modulo 256).

<u>3.21.1 Status</u>

_

The status contains the following information

	b3	b2	b1	b0	meaning
status nibble:	х	х	х	0	no announcement hour
	х	х	х	1	announcement (ST-WT-ST)
	х	х	0	х	standard time(WT)
	х	х	1	х	daylight saving time (ST)
	0	0	х	х	time/date invalid
	0	1	х	х	crystal operation
	1	0	х	х	radio operation
	1	1	х	х	radio operation (high accuracy)

3.22 hopf Clockmouse

This data string can be used when the driver software for the clock-mouse is installed. Windows 3.x and Windows 95 computers can be synchronised by means of this software.

The parameter for the serial interface must be set as follows:

- baud rate: 300 Baud
- data format: 7 Bit
- 2 stop bits
- parity: even
- handshake: no
- control characters : yes
- sequence for CR / LF: SW3 switch 8 off
- synchronisation: on request, local time, without advance, output immediately

The data string is structured as follows:

character no:	meaning	
1	tens hour	
2	unit hour	
3	tens minutes	
4	unit minutes	
5	tens seconds	
6	unit seconds	
7	day of the week	
8	tens day	
9	unit day	
10	tens month	
11	unit month	
12	tens year	
13	unit year	
14	status 1	
15	status 2	
16	CR (carriage return)	

The data string is requested cyclically by the driver software.

3.22.1 Status

The status information consists of 4bit each, meaning the following

<u>Status 1</u>

B 3	meanin	Ig		
1	announ	announcement of leap second		
B2	B1	meaning		
1	0	standard /wintertime		
0	1	daylight saving time		

B0 meaning

1 announcement of changeover standard/daylight saving/ standard time

<u>Status 2</u>

B3 meaning

1 battery voltage too low always 0, because there is no battery

B2 meaning

1 reception interrupted always 0, because reception runs permanently

B1 meaning

1 radio reception

B0 meaning

1 valid time at hand

3.23 hopf Clockmouse with <o><CR>

This data string has the same structure as the Clockmouse data string. Merely at the beginning of the string an "o" followed by "CR" is sent. This data string is necessary when a system transmits the string "o<CR>" to the board 7201 and this string is expected back as an echo with a time string.

The parameter for the serial interface must be set as follows:

- baud rate: 300 Baud
- data format: 7 Bit
- 2 stop bits
- parity: even
- handshake: no
- control character: yes
- sequence for CR / LF: SW3 switch 8 off
- synchronisation: on request, local time, without advance, output immediately

Structure of the data string

character no .:	meaning	value (value range)
1	0	\$6F
2	CR (carriage return)	\$0D
3	tens hour	\$30-32
4	unit hour	\$30-39
5	tens minute	\$30-35
6	unit minute	\$30-39
7	tens second	\$30-35
8	unit second	\$30-39
9	day of the week	\$31-37
10	tens day	\$30-33
11	unit day	\$30-39
12	tens month	\$31-32
13	unit month	\$30-39
14	tens year	\$30-39
15	unit year	\$30-39
16	status 1	\$30-39, 41-46
17	status 2	\$30-39, 41-46
18	CR (carriage return)	\$0D

The structure of the status corresponds with the one of the Clockmouse data string without leading <o><CR> (see 3.22.1).

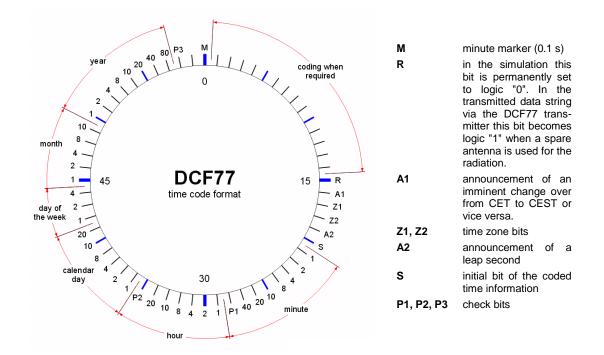
3.24 DCF77-pulse output

In this setting the DCF77-pulse is put out at the interfaces RS232, RS422 and TTY.

The DCF77-data string puts out the complete time information minute, hour, day of the week and date.

Every second of a minute a particular time information is transmitted, except for the 59th second. The missing signal in this second indicates an imminent minute change in the next second.

At the beginning of every second a pulse is put out for 100 or 200ms. The initial edge of the pulse marks the exact beginning of the second.


The duration of the second markers of 100 and 200 ms (binary 0 and 1) are transformed into a BCD-Code to decode the transmitted data string.

The time data string is divided into 3 different groups, each followed by a parity check:

- P1 = number of minutes
- P2 = number of hours
- P3 = current day of the year , the day of the week and the year

The binary ones of a group are determined and increased to an even number by the parity bit. When a valid time information (CEST) is transmitted the 17th second marker takes 200ms. One hour before the changeovers from CEST to CET or vice versa the 16th second marker takes 200ms.

The coding is shown below:

DCF77 : D = German, C = Long wave signal, F = Frankfurt, 77 = frequency

The following switches on SW2 have changed functions.

Time base

The switch POS 8 is used to select the time base for the structure of the DCF77 data string, the choice being either UTC or local time.

Switch 8	Timebase
off	local time is put out in the DCF77-data string
on	UTC is put out in the DCF77-data string

Output Mode

The switch POS 7 is used to decide if the DCF77 pulse is put out permanently or only if the base system is radio synchronous.

Switch 7	Output Mode
off	output only if the base system is radio synchronous output when the time of the base system is valid
on	output when the time of the base system is valid

Fault Mode

The DCF77-data string is not put out when the base system does not have a plausible time or if it is not radio synchronous (setting POS 7 – "off").

The output levels of the different interfaces remain in the rest position. This could also simulate a faulty line to the connected device.

POS 6 decides if an un-decodable pulse is putout in case of a fault.

Switch 6	Time Base
off	a constant 2 Hz-pulse is put out in case of a fault
on	the output levels go to rest position in case of a fault

3.25 NMEA - GPRMC

The full NMEA data string GPRMC contains the position-, rate- and time data (UTC) calculated by the GPS receiver. The different information are separated in the data string by a comma. Only a comma is set if an information is not available.

The transmitted data string contains only the time information in UTC.

\$GPRMC, hhmmss.ss, A, , , , , , DDMMYY, , *HH<CR><LF>

Structure of the data string

character no .:	meaning	value (value range)
1	\$ string start	\$24
2	G	\$47
3	Р	\$50
4	R	\$52
5	Μ	\$4D
6	С	\$43
7	, comma as separation	\$2C
8	tens hour UTC-time	\$30-32
9	unit hour	\$30-39
10	tens minute	\$30-35
11	unit minute	\$30-39
12	tens second	\$30-35
13	unit second	\$30-39
14	. point as separation	\$2E
15	tenth second	\$30-39
16	hundredth second	\$30-39
17	, comma as separation	\$2C
18	A	\$41
19	, comma as separation	\$2C
20	, comma as separation	\$2C
21	, comma as separation	\$2C
22	, comma as separation	\$2C
23	, comma as separation	\$2C
24	, comma as separation	\$2C
25	, comma as separation	\$2C
26	tens day	\$30-33
27	unit day	\$30-39
28	tens month	\$30-31
29	unit month	\$30-39
30	tens year	\$30-39
31	unit year	\$30-39
32	, comma as separation	\$2C
33	, comma as separation	\$2C
34	* string limitation	\$2A
35	tens checksum	\$30-39
36	unit checksum	\$30-39
37	CR (carriage return)	\$0D
38	LF (line feed)	\$0A

The checksum will be calculated from the XOR function of all transmitted ASCI characters between $\hfill\hf$

All information will be transmitted as ASCI characters with 8 bit word length, 1 stop bit and no parity.

The following settings must be done on the board:

- baud rate = 4800 baud
- word length = 8 bit
- stop bit = 1
- parity = no parity
- transmission point = every second
- forerun off
- ETX immediately
- transmission delay off
- time base = UTC

The following DIP switch setting is necessary:

Pos.	1	2	3	4	5	6	7	8
SW1	off	on	on	on	off	off	on	off
SW2	off	off	on	off	on	on	on	on
SW3	on	off						

<u>3.26 DA55</u>

character no .:	meaning	value (value range)
1	tens hour	\$30-32
2	unit hour	\$30-39
3	tens minute	\$30-35
4	unit minute	\$30-39
5	tens second	\$30-35
6	unit second	\$30-39
7	day of the week	\$31-37
8	tens day	\$30-33
9	unit day	\$30-39
10	tens month	\$30-31
11	unit month	\$30-39
12	tens year	\$30-39
13	unit year	\$30-39
14	Status Byte 1	\$30-3F
15	Status Byte 2	\$30-3F
16	CR (carriage return)	\$0D

Structure of the data string

Status Bytes in Data String DA55

The 14th and 15th ASCII character contain status information. The status is decoded binary.

Structure of these Characters:

The status bytes consist of 7 bits (see settings further down). In Status byte 1 and 2 the status bits **b6**, **b5** and **b4** always have the same value:

- **b6** = 0
- **b5** = 1
- **b4** = 1

That means: 1. Nibble always = 3

Status 1. characters:

B3 meaning

1 announcement of leap second

B2 B1	meaning
-------	---------

- 1 0 standard- or wintertime
- 0 1 daylight saving time

B0 meaning

1 announcement of changeover standard-/daylight saving-/standard time

Status 2. characters:

B3 meaning

- 1 battery voltage too low, **is always set to 0**
- 0 battery voltage is fine

B2 meaning

- 1 there is no valid time nor reception
- 0 this value is set by the first successful reception

B1 meaning

- 1 clock is radio synchronous
- 0 clock is not radio synchronous

B0 meaning

- 1 there is a valid time
- 0 there is no valid time

All information are transmitted as ASCII characters with 7 bit word length, 2 stop bits and parity bit (even).

The following settings must be done on the board:

- baud rate = 300 baud
- word length = 7 bit
- stop bit = 2
- parity = even parity
- transmission point = every second
- forerun = off
- ETX = immediately
- transmission delay = off
- time base = local

The following dip switch setting is necessary:

Pos.	1	2	3	4	5	6	7	8
SW1	off	off	off	on	off	on	on	off
SW2	off	off	on	off	off	on	on	on
SW3	off	off	off	on	on	off	off	on

When SW2 is set as described above, the settings of SW1 and SW3 are automatically corrected to the described values by internal software filter.

3.27 OMS Synchro

Structure of the data string

character no .:	meaning	value (value range)
1	"\" start character	\$5c
2	"G" source: GPS	\$47
3	tens hour	\$30-32
4	unit hour	\$30-39
5	tens minute	\$30-35
6	unit minute	\$30-39
7	tens second	\$30-35
8	unit second	\$30-39
9	"2" thousands year	\$32
10	"0" hundred year	\$30
11	tens year	\$30-39
12	unit year	\$30-39
13	tens month	\$30-31
14	unit month	\$30-39
15	tens day	\$30-33
16	unit day	\$30-39
17	"0"	\$30
18	unit day of the week	\$30-36 (0=Su, 1=Mo … 6=Sa)
19	checksum: high nibble	\$30-3F
20	checksum: low nibble	\$30-3F

The following settings must be done on the board:

- baud rate = 9600 Baud
- word length = 8 Bit
- stop bit = 2
- parity = no Parity
- transmission point = every hour
- forerun = off
- transmission delay = off
- time base = UTC / local time

The following dip switch setting is necessary:

Pos.	1	2	3	4	5	6	7	8
SW1	on ¹ off ²	on	on	on	off	off	off	on
SW2	off	off	off	on	on	on	off	on
SW3	on	off	off	off	on	off	off	on

When SW2 is set as described above, the settings of SW1 (without switch 1) and SW3 (without switch 4 [must be off]) are automatically corrected to the described values by internal software filter.

¹ UTC time

² local time

3.28 IRIG J-1x

IRIG J-12..J-18 Data String

- J-12: 300Bd
- J-13: 600Bd
- J-14: 1200Bd
- J-15: 2400Bd
- J-16: 4800Bd
- J-17: 9600Bd
- J-18: 19200Bd

Structure of the Data String

character no .:	meaning	value (value range)
1	SOH	\$01
2	hundred day of the year	\$30-33
3	tens day of the year	\$30-39
4	unit day of the year	\$30-39
5	":" colon	\$3A
6	tens hour	\$30-32
7	unit hour	\$30-39
8	":" colon	\$3A
9	tens minute	\$30-35
10	unit minute	\$30-39
11	":" colon	\$3A
12	tens second	\$30-35
13	unit second	\$30-39
14	Carriage Return	\$0D
15	Line feed	\$0A

3.28.1 Example of a transmitted Data String

(SOH)034:12:34:56 (CR)(LF)

It is the 34th day of the year - 12:34:56 o'clock

<u>3.29 CCTV</u>

character no .:	meaning	value (value range)
1	"0" start character command	\$30
2	"M" command "Master"	\$4D
3	"a" command end	\$61
4	tens hour	\$30-32
5	unit hour	\$30-39
6	"," comma	\$2C
7	tens minute	\$30-35
8	unit minute	\$30-39
9	"," comma	\$2C
10	tens second	\$30-35
11	unit second	\$30-39
12	"," comma	\$2C
13	"0" start character command	\$30
14	"X" end of string	\$58
15	carriage return	\$0D

Structure of the data string

The following settings must be done on the board:

- baud rate = 1200 or 4800 Baud
- word length = 8 Bit
- stop bit = 1
- parity = no Parity
- transmission point = every minute
- forerun = off
- transmission delay = off
- time base = UTC / local time

The following dip switch setting is necessary:

Pos.	1	2	3	4	5	6	7	8
SW1	off	on	on	on	on	on ¹ off ²	off ¹ on ²	off
SW2	off	off	off	on	off	on	on	off
SW3	on	off	off	on	on	off	off	off

3.30 ABB Master-Clock

Structure of the data string

character no .:	meaning	value (value range)
1	DEL -Character	\$7F
2	"*" asterisk	\$2A
3	"*" asterisk	\$2A
4	"*" asterisk	\$2A
5	tens year	\$30-39
6	unit year	\$30-39
7	":" colon	\$3A
8	tens month	\$30-31
9	unit month	\$30-39
10	":" colon	\$3A
11	tens day	\$30-33
12	unit day	\$30-39
13	":" colon	\$3A
14	tens day of the week	\$30
15	unit day of the week	\$31-37 (1=Mo 7=So)
16	":" colon	\$3A
17	tens hour	\$30-32
18	unit hour	\$30-39
19	":" colon	\$3A
20	tens minute	\$30-35
21	unit minute	\$30-39
22	"*" asterisk	\$2A
22	tens second	\$30-35
23	unit second	\$30-39
24	Carriage Return	\$0D
25	Line feed	\$0A
26	DEL -Character	\$7F

The following settings must be done on the board:

- baud rate = 4800 Baud
- word length = 7 Bit
- stop bit = 1
- parity = odd
- transmission point = every minute
- forerun = off
- transmission delay = off
- time base = local time

The following DIP-switch setting is necessary:

Pos.	1	2	3	4	5	6	7	8
SW1	off	off	off	off	on	off	on	off
SW2	off	off	off	off	on	on	on	off
SW3	on	off	off	on	on	off	off	off

<u>3.31 BEXBACH</u>

The structure of the data string BEXBACH is compatible to the SINEC H1 data string with the exception of character 21 and 24 witch are changed to ":" colons (see *chapter 3.5 SINEC H1*).

character no.	meaning	value (value range)
1	STX (start of text)	\$02
2	"D" ASCII D	\$44
3	":" colon	\$3A
4	tens day	\$30-33
5	unit day	\$30-39
6	"." point	\$2E
7	tens month	\$30-31
8	unit month	\$30-39
9	"." point	\$2E
10	tens year	\$30-39
11	unit year	\$30-39
12	";" semicolon	\$3B
13	"T" ASCII T	\$54
14	":" colon	\$3A
15	day of the week	\$31-37
16	";" semicolon	\$3B
17	"U" ASCII U	\$55
18	":" colon	\$3A
19	tens hour	\$30-32
20	unit hour	\$30-39
21	":" colon	\$3A
22	tens minute	\$30-35
23	unit minutes	\$30-39
24	":" colon	\$3A
25	tens second	\$30-36
26	unit second	\$30-39
27	";" semicolon	\$3B
28	"#" or space	\$23 / \$20
29	"*" or space	\$2A / \$20
30	"S" or space	\$53 / \$20
31	"!" or space	\$21 / \$20
32	ETX (end of text)	\$03

<u>3.31.1 Status</u>

The characters 28 - 31 in the data string BEXBACH tell the synchronisation status of the clock.

The characters mean the following:

character no. 28 = "#" space	no radio synchronisation after reset, time invalid radio synchronisation after reset, clock in crystal operation
character no. 29 = "*"	time from internal crystal in the clock
space	time by radio reception
character no. 30 = "S"	daylight saving time
space	standard time
character no. 31 = "!" space	announcement of a W/S or S/W changeover no announcement

3.31.2 Example of a transmitted Data String

(STX)D:03.01.96;T:3;U:12:34:56; ____(ETX) (_) = space

radio operation, no announcement, standard time It is Wednesday 03.01.96 - 12:34:56 h

3.31.3 String request

The data string BEXBACH can also send by request. The time of output will be set to "send only by request" and the string will be requested with the ASCII character "?".

3.32 Data String NGTS-String

The following parameters are pre-configured on serial interface COM0 (delivery status):

		fixed	variable
Baud rate:	9600 baud		х
Data bits:	8		х
Stop bit(s):	1		х
Parity:	no		х
point of transmission:	every minute		х
second forerun:	yes		х
control character:	without function		
CR/LF:	CR ⇔ LF		x

The NGTS string can be transmitted with all modes (e.g., forerun or "last control character on the second change").

In the standard mode this string is transmitted every minute in the 59th second with the data of the next minute change.

3.32.1 Structure of Data String

character no .:	meaning	value (value range)
1	"T" ASCII T	\$54
2	10er year	\$30-39
3	1er year	\$30-39
4	10er month	\$30-31
5	1er month	\$30-39
6	10er day	\$30-33
7	1er day	\$30-39
8	1er day of the week	\$31-37
9	10er hour	\$30-32
10	1er hour	\$30-39
11	10er minute	\$30-35
12	1er minute	\$30-39
13	status (0, 1)	\$30-31 (30 \Rightarrow Local Time, 31 \Rightarrow UTC)
14	status (0, 1)	\$30-31 (31 ⇔GPS synchronous)
15	CR (carriage return)	\$0D
16	LF (line feed)	\$0A

3.32.2 Example of Data String

T0401293123401(CR)(LF)

It is Wednesday 29.01.04 - 12:34 o'clock local time The clock is synchronised by GPS.

3.33 SAT 1703 Time String

All modes can be transmitted with the SAT 1703 Time String (e.g. with forerun or end character at second change).

The SAT 1703 Time String can also be sent on request. The point of transmission will be set to "transmission on request". The SAT 1703 Time String can be requested with ASCII-character "?".

3.33.1 Specified Settings

Automatic:	no
Required:	no
Blocked:	no

3.33.2 Structure

Character No.	Meaning		Hex-Value	
1	STX (start of text)		\$02	
2	tens day	\$30-33		
3	unit day	-		
4			\$2E	
5	tens month		\$30-31	
6	unit month	unit month		
7			\$2E	
8	tens year		\$30-39	
9	unit year		\$30-39	
10	"/"		\$2F	
11	unit day of the week		\$31-37	
12	"/"		\$2F	
13	tens hours		\$30-32	
14	unit hours		\$30-39	
15	"."		\$3A	
16	tens minutes		\$30-35	
17	unit minutes		\$30-39	
18	"." ·		\$3A	
19	tens seconds		\$30-35	
20	unit seconds		\$30-39	
21	"M" or "M" or "U"		\$4D, \$4D, \$55	
22	"E" or "E" or "T"	(Standard time, Daylight saving time	\$45, \$45, \$54	
23	"Z" or "S" or "C"	or UTC)	\$5A, \$53, \$43	
24	" " or "Z" or " "	,	\$20, \$5A, \$20	
25	" " (\$20 ⇔ synchronous) or "*" (\$2A ⇔ not synchronous)		\$20 \$2A	
26	" " (\$20 ⇔ no announcement) or "!" (\$21 ⇔ announcement of a DST or standard time changeover)		\$20 \$21	
27	CR (carriage return)		\$0D	
28	LF (line feed) \$0A		\$0A	
29	ETX \$		\$03	

<u>3.33.3 Status</u>

The characters 21-26 in the SAT 1703 Time String indicate the synchronisation status of the clock.

The characters mean the following:

Character no. 21-24 =	"MESZ" "MEZ " "UTC "	Central European Summertime (Daylight Saving Time) Central European Time (standard time / winter time) Coordinated Universal Time
Character no. 25 =	"*" " " (space)	time from internal crystal in the clock time by radio reception
Character no. 26 =	"!" " " (space)	announcement of a DST or standard time changeover no announcement

3.33.4 Example

(STX) 18.07.02/4/02:34:45UTC (CR)(LF)(ETX)

- It is Thursday 18.07.02 02:34:45 o'clock UTC
- The clock is synchronous