Technical Description

Mains Voltage Analysis Board 7515

hopfElektronik GmbHNottebohmstr. 4158511 LüdenscheidPost box 184758468 Lüdenscheidtel.:++49 (0)2351 / 938686fax:++49 (0)2351 / 459590internet:http://www.hopf.come-mail:info@hopf.com

CC	DNTENTS	Page
1	General Information	5
1.1		5
1.2	0	5
1.3		5
2	Mains Frequency	6
2.1	Calculation of the Mains Frequency	6
2.2	Time from the Mains Frequency	7
	2.2.1 Mains time / System time - Synchronization	7
	2.2.2 Time Synchronized by Mains Time Monitoring	7
	2.2.3 Difference Time System / Mains time	8
2.3	Analogue Frequency Output (option)	8
3	Set-up	9
3.1	Serial Interface	9
3.2	Setting the Transmission Parameter with DS1 and DS2	10
3.3	Pin Function Serial Interface	11
3.4	Setting of the Board 7515 with DS3	11
4	Data Strings	12
4.1	System Time (Identifier F0)	12
4.2	Mains Time (Identifier F1)	12
4.3	Difference Time (Identifier F2)	13
4.4	Mains Frequency (Identifier F3)	13
4.5	5 F7-Master/Slave-String (Identifier F7)	14
	4.5.1 Structure	14
	4.5.2 Status	15
	4.5.3 Example	15
5	Position Overview	16
6	Technical Data	17

1 General Information

The board 7515 contains a measuring and monitoring system for mains frequencies between 45 and 65 Hz. It is equipped with a bus connection for the *hopf* radio clock system 7001.

The board contains the following functional groups:

- board identification
- calculation of the mains frequency
- time from the mains frequency
- difference time between system time and mains time
- analogue output of the frequency deviation from the set value (optional)
- serial data output

1.1 Starting

As the board runs in the GPS system 7001 or in the DCF77 system 7001, no initializing or reset function is required to operate the board. It is only necessary to connect the mains frequency which is to be analyzed to the system. The voltage must be between 90 - 260 V AC.

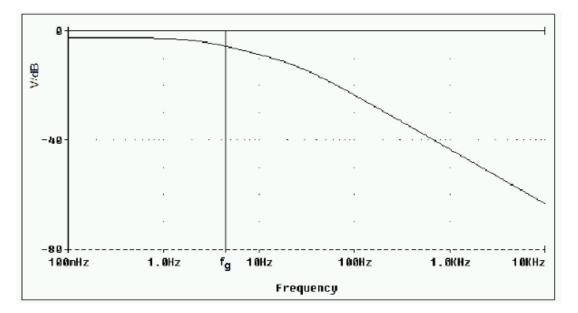
1.2 Board Identification

Up to four boards type 7515 can be used in the system to obtain data from different voltage mains supplies. The identification of each board is carried out by means of the DIP switch DS3.

S5	S4	board
on	on	board 1
on	off	board 2
off	on	board 3
off	off	board 4

The board identification is pre-set by our company. The customer is only asked to regard the correct switch position when the board is exchanged.

1.3 Precautions


The power supply must not be connected by anybody except specialists or authorized persons. The mains fuse protection should be 260 V / 1 A.

2 Mains Frequency

2.1 Calculation of the Mains Frequency

The mains voltage is transformed to max. 8.5 V AC by means of a safety transformer in the input circuit of the board and it is changed into square pulses by a Schmitt-trigger circuit.

To suppress interferences caused by high frequency glitches a low pass filter with the following curve is placed before the Schmitt-trigger.

The pulse width of the square pulses is used to calculate the mains frequency. On the board a frequency of 512 kHz is created from the highly accurate system time base of 1 kHz.

The accuracy of the 512 kHz signal depends on the system and is, when using a board in a

- DCF-system ± 2,0 ppm
- GPS-system ± 0,2 ppm

This frequency is used to create a measuring value from the sum of 8 mains periods. A new measuring value (cycle duration) is available after about 160 msec in case of 50 Hz mains frequency and after about 133 msec in case of 60 Hz mains frequency. After a measuring value is made the frequency is calculated to \pm 1 mHz from the last 8 values by division of the cycle duration. The last 64 mains periods are used for each frequency calculation.

2.2 Time from the Mains Frequency

The time is created from the mains frequency by counting the mains periods in the micro processor. As the time is generated in second steps it is necessary to tell the board the base frequency so that the processor can use the according dividing factor for one second.

The frequency is selected by means of the DIP-switch 3 (see table DS3).

- S3 off 50 Hz base frequency
- S3 on 60 Hz base frequency

2.2.1 Mains time / System time - Synchronization

There are the following possibilities to synchronize the mains time with the system time:

- after a system reset caused by program error or voltage loss a synchronization is carried out automatically.
- by addressing the board via key-pad. The following input mode is required.

Choice the "Time Synchronized by Mains Time Monitoring" via the menu item **S.-CLK** (see Key-Entry / System Control and Choice of Special Functions).

2.2.2 Time Synchronized by Mains Time Monitoring

After the selection of the mains time (time synchronized by mains supply) function the following picture is displayed:

selection picture

SELECT NET-CLOCK 1 - 4 > < RESET NET-TIME TO MATCH SYSTEM TIME

By selecting the board number (1 - 4) one out of 4 boards 7515 can be addressed in the system.

The second line of the selection picture shows the commands which can be used to control this board.

If the first board 7515 in the system is to be selected press key "1".

The display shows (example):

1. NT: 12:34:56 dT: +0:00:00,032 SY.-T: 12:34:56 F: 50,001 Hz INPUT ->_

Entering **"R"** and **"ENT"** synchronizes the mains time with the system time and the difference time will be set back to 0.

The mains time synchronization can also be done by superior computers or controls via a potential free voltage pulse of at least 0.5 sec duration. This pulse is fed to the board via the 9-pole SUB-D female connector 3. The pulse height can be on 3 different voltage levels.

connector 3	connection 1	TTL-level
connector 3	connection 2	+ 12 – 24 V DC
connector 3	connection 3	+ 18 – 36 V DC
connector 3	connection 6	GND

2.2.3 Difference Time System / Mains time

The precise adjustment of the frequency requires the difference time between system time and the mains time, because the system time has a long term accuracy of 1*10 ⁻¹³. This is the same as the accuracy of the DCF77-transmitter or of the GPS satellites.

The difference time is calculated on every mains time second change in millisecond steps.

The maximum difference time is $\pm 00:59:59,999$ sec.

2.3 Analogue Frequency Output / FG751510 (option)

Optionally there are 2 analogue frequency outputs available for the long term recording of the mains frequency. Every output can be set ex works by voltage to ± 2.5 V or by current to ± 1 mA or ± 20 mA limit range based on the ground potential (see *chapter 5 Position Overview*).

Channel	Jumper	Pin	Output Current
1	J1	1-2	± 1 mA (standard setting)
1	J1	2-3	± 20 mA
2	J2	1-2	± 1 mA (standard setting)
2	J2	2-3	± 20 mA

Channel 1 is an output of \pm 5 Hz for the limit range, whereas channel 2 has an output of \pm 0.5 Hz for the limit range. The ranges refer to the set standard frequency of 50 or 60 Hz (see pt. 2.2). The analogue outputs are realized via a DAC with 4000 parts resolution.

Channel	Pin	
channel 1 voltage output	1	+ 5 Hz = + 2,5 V or - 5 Hz = - 2,5 V
ground	3	
resolution		2 mHz / mV
channel 1 power output	2	+ 5 Hz = + 1 mA or - 5 Hz = - 1mA
ground	3	
resolution		5 mHz / µA
channel 2 voltage output	6	+ 0,5 Hz = + 2,5 V or - 0,5 Hz = - 2,5 V
ground	8	
resolution		0,2 mHz / mV
channel 2 power output	7	+ 0,5 Hz = + 1 mA or - 0,5 Hz = - 1 mA
ground	8	
resolution		0,5 mHz / μA

The analogue output goes via the 9-pole SUB-D female connector 4.

<u>3 Set-up</u>

3.1 Serial Interface

The measuring values like frequency, time etc. can be displayed on *hopf* large displays. The selection is carried out via a serial interface in RS232 or RS422 mode.

The following data strings are available for the individual measurements:

Identifier	String	Construction	Max. resolution
F0	System time	Sy 12:34:56	Seconds
F1	Mains time	N1 12:34:56	Seconds
F2	Difference time (positive)	t + 00:00:00,056	msec
F3	Frequency (50Hz / 60Hz)	f1 50,001	mHz
F7	Synchronization via F7-Master/Slave-String	hr min sec dow Da Mo Yr	Seconds

The exact string structure is described in *Chapter 4 Data Strings*.

The strings are output every second, with the exception of the F7-Master/Slave-String, which is transmitted on the 59^{th} second of every minute.

3.2 Setting the Transmission Parameter with DS1 and DS2

- DS1 for interface S1 on connector S1 in the front panel.
- DS2 for interface S2 on connector S2 in the front panel (not activated at present)

baud rate

	DS1 an	DS1 and DS2		
S8	S7	S6	S5	baud rate/Bd
on	on	on	on	19.200
off	on	on	on	9.600
on	off	on	on	7.200
off	off	on	on	4.800
on	on	off	on	3.600
off	on	off	on	2.400
on	off	off	on	1.800
off	off	off	on	1.200
on	on	on	off	600
off	on	on	off	300
on	off	on	off	150
off	off	on	off	135
on	on	off	off	110
off	on	off	off	75
on	off	off	off	50

<u>Please note</u>: A correct data transmission cannot be garuanteed in case of baud rates below 2400 baud.

Parity-Mode and Wordlength

DS1 and DS2	on	off
S1	7 data bits	8 data bits
S2	parity odd	parity even
S3	parity on	parity off
S4	2 stopbits	1 stopbit

Handshake Signals (not activated at present)

DS3	on	off
S1	RTS/CTS-simulation UART A	RTS/CTS active UART A
S8	RTS/CTS-simulation UART B	RTS/CTS active UART B

3.3 Pin Function Serial Interface

Connector S1 and S2 in the Front Panel

Pin	Signal	
1	GND	
2	RS232 TxD	
3	RS232 RxD	
4	RS232 RTS	
5	RS232 CTS	
6	RS422 TxD +	high active
7	RS422 TxD –	low active
8	RS422 RxD –	low active
9	RS422 RxD +	high active

3.4 Setting of the Board 7515 with DS3

DS3	On	Off
S2	autoreset suppressed	autoreset active
S3	mains frequency 60 Hz	mains frequency 50 Hz
S4	board identification	board identification
S5	board identification	board identification
S6	not used	not used
S7	bussystem 7001	bussystem 7000

4 Data Strings

4.1 System Time (Identifier F0)

Character No.	Meaning	Hex-Value
1	STX (start of text)	\$02
2	"F" ASCII F	\$46
3	"0" ASCII 0	\$30
4	"S" ASCII S	\$53
5	"y" ASCII y	\$79
6	Space	\$20
7	Tens hour	\$30-32
8	Unit hour	\$30-39
9	":" Colon	\$3A
10	Tens minute	\$30-35
11	Unit minute	\$30-39
12	":" Colon	\$3A
13	Tens second	\$30-36
14	Unit second	\$30-39
15	CR (carriage return)	\$0D
16	ETX (end of text)	\$03

4.2 Mains Time (Identifier F1)

Character No.	Meaning	Hex-Value
1	STX (start of text)	\$02
2	"F" ASCII F	\$46
3	"1" ASCII 1	\$31
4	"N" ASCII N	\$4E
5	"1" ASCII 1	\$31
6	Space	\$20
7	Tens hour	\$30-32
8	Unit hour	\$30-39
9	":" Colon	\$3A
10	Tens minute	\$30-35
11	Unit minute	\$30-39
12	":" Colon	\$3A
13	Tens second	\$30-36
14	Unit second	\$30-39
15	ETB (end of block)	\$17
16	ETX (end of text)	\$03

Character No.	Meaning	Hex-Value		
1	STX (start of text)	\$02		
2	"F" ASCII F	\$46		
3	"2" ASCII 2	\$30		
4	"t" ASCII t	\$53		
5	DEL (Delete)	\$7F		
6	DEL (Delete)	\$7F		
7	Operational sign (+/-)	\$2B-2D		
8	DEL (Delete)	\$7F		
9	DEL (Delete)	\$7F		
10	Tens hour	\$30-32		
11	Unit hour	\$30-39		
12	":" Colon	\$3A		
13	Tens minute	\$30-35		
14	Unit minute	\$30-39		
15	":" Column	\$3A		
16	Tens second	\$30-36		
17	Unit second	\$30-39		
18	CR (carriage return)	\$0D		
19-23	5 * Space	\$20		
24	Hundreds millisecond	\$30-39		
25	Tens millisecond	\$30-39		
26	Unit millisecond	\$30-39		
27	ETB (end of block)	\$17		
28	ETX (end of text)	\$03		

4.3 Difference Time (Identifier F2)

4.4 Mains Frequency (Identifier F3)

Character No.	Meaning	Hex-Value
1	STX (start of text)	\$02
2	"F" ASCII F	\$46
3	"3" ASCII 3	\$33
4	"f" ASCII f	\$66
5	"1" ASCII 1	\$31
6	Space	\$20
7	Frequency tens	\$30-39
8	Frequency unit	\$30-39
9	"," Comma	\$2C
10	Frequency 1/10	\$30-39
11	Frequency 1/100	\$30-39
12	Frequency 1/1000	\$30-39
13	Space	\$20
14	"H" ASCII H	\$48
15	"z" ASCII z	\$7A
16	ETB (end of block)	\$17
17	ETX (end of text)	\$03

4.5 F7-Master/Slave-String (Identifier F7)

E.g. the large scale display 4985 can be synchronized to the Master System time data with the F7-Master/Slave-String. The difference time of the base system is also transferred in the data string, so that the UTC time can also be displayed with the correct difference to local time.

The string is transmitted in the 59th second together with the data of the next full minute. The end character "**ETX**" takes place on the exact second change and updates the data on the large display.

The F7-Master/Slave-String transmits:

- Local time (hour, minute, second)
- Date (day, month, year [2-digit])
- Difference time Local time to UTC time (hour, minute)
- Day of the week
- Status information (announcement of a ST/WT-changeover, announcement of a leap second, reception status of the F7-Master/Slave-String source)

4.5.1 Structure

Character No.	Meaning	Hex-Value
1	STX (start of text)	\$02
2	"F" ASCII F	\$46
3	"7" ASCII 7	\$37
4	status	\$30-39, \$41-46
5	day-of-week	\$31-37
6	tens hour	\$30-32
7	unit hour	\$30-39
8	tens minute	\$30-35
9	unit minute	\$30-39
10	tens second	\$30-36
11	unit second	\$30-39
12	tens day	\$30-33
13	unit day	\$30-39
14	tens month	\$30-31
15	unit month	\$30-39
16	tens year	\$30-39
17	unit year	\$30-39
18	difference time tens hour / operational sign	\$30-31, \$38-39
19	difference time unit hour	\$30-39
20	difference time tens minute	\$30-35
21	difference time unit minute	\$30-39
22	CR (carriage return)	\$0D
23	LF (line feed)	\$0A
22	ETX (end of text)	\$03

The difference time in hours and minutes is transmitted after the year. The transfer takes place in BCD. The difference time can be max. \pm 11.59 hours.

hopf Elektronik GmbH

The operational sign is shown as the highest bit in the Tens Hours:

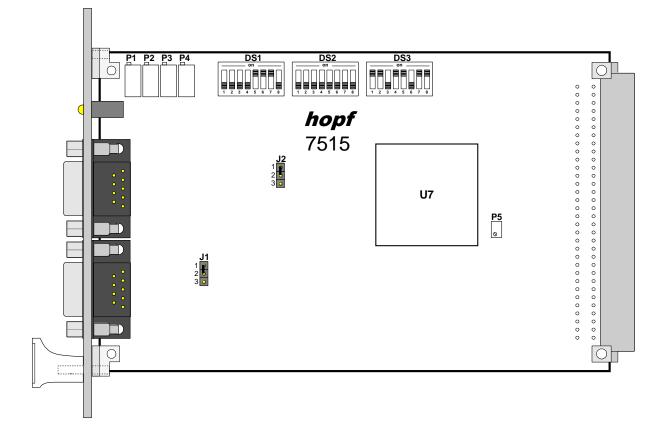
Logic 1 = Local time is behind UTC

Logic **0** = Local time is ahead of UTC

Example:

Data String	Tens DiffTime	Difference Time
(STX)F783123456030196 <u>0</u> 300(LF)(CR)(ETX)	<u>0000</u>	- 03:00h
(STX)F783123456030196 <u>1</u> 100(LF)(CR)(ETX)	<u>0001</u>	- 11:00h
(STX)F783123456030196 <u>8</u> 230(LF)(CR)(ETX)	<u>1000</u>	+ 02:30h
(STX)F783123456030196 <u>9</u> 100(LF)(CR)(ETX)	<u>1001</u>	+ 11:00h

4.5.2 Status


Nibble	b3	b2	b1	b0	Meaning
Status	х	Х	х	0	No ST/WT-changeover announcement
	Х	Х	Х	1	ST/WT-changeover announcement
	Х	Х	0	Х	Wintertime (WT)
	Х	Х	1	х	Summertime (ST)
	х	0	х	х	No leap second announcement
	Х	1	х	х	Leap second announcement
	0	Х	х	х	Quartz operation
	1	Х	х	х	Radio operation
Nibble	b3	b2	b1	b0	Meaning
Day of the Week	0	0	0	1	Monday
	0	0	1	0	Tuesday
	0	0	1	1	Wednesday
	0	1	0	0	Thursday
	0	1	0	1	Friday
	0	1	1	0	Saturday
	0	1	1	1	Sunday

4.5.3 Example

(STX)F7831234560301968230(LF)(CR)(ETX)

- Radio operation
- No announcement
- Wintertime
- It is Wednesday 03.01.96 12:34:56 o'clock
- The difference time to UTC is + 2.30 hours

5 Position Overview

6 Technical Data

voltage supply:	5 V DC via bussystem
power consumption:	260 mA
mains supervision voltage input:	90 - 260 V AC
frequency range:	45 - 55 Hz
or	55 - 65 Hz

measuring accuracy mains frequency

DCF77-system:	± 2 ppm ± 1 mHz
GPS-system:	± 0.2 ppm ± 1 mHz
difference time:	± 1 msec
Current consumption measuring input (50Hz)	0.9mA (110V AC) 3.2mA (230V AC)

analogue outputs

<u>output 1</u>	
voltage output:	± 2.5 V resolution 2 mHz / mV
power output:	\pm 1 mA resolution 5 mHz / μA
output 2	
voltage output:	± 2.5 V resolution 0.2 mHz / mV

special versions

Soft and hardware alterations accroding to customer specifications are possible

<u>Please note</u>: The *hopf* company withhold the right to technical alterations at any time.