Additional Technical Manual

Control Board for Switching Times

1 Control Board for Switching Times 7131 3
1.1 Operation Modes 3
1.2 Cyclic Switching Times 4
1.3 Special Cases 5
1.4 Connecting Cable 5
1.5 Supported Operating Systems 5
2 Relay Board 7140 6
2.1 Assignment of the VG Ledge - Board 7140 7
2.2 Block Diagram 7140 7
hopf Elektronik GmbH
Nottebohmstr. 4158511 Lüdenscheid
Postfach 184758468 Lüdenscheid
Tel.: $\quad++49(0) 2351 / 9386-86$
Fax: ++49 (0)2351 / 9386-93
Internet: http://www.hopf.com
E-mail: info@hopf.com

1 Control Board for Switching Times 7131

The control board for switching times enables the programming and control of max. 64 switching channels.

There are 15 programming lines per each channel possible expendable by connecting the channels in parallel or serial.
The switching times are performed via different modes that are hierarchically structured. A highorder mode covers all low-order ones.

1.1 Operation Modes

The operation modes have the following meanings

Mode X1

$01=$ Switching time daily every week
11 = Switching time daily every week with odd numbers
21 = Switching time daily every week with even numbers

Mode X2

$02=$ Switching time Monday - Friday every week
12 = Switching time Monday - Friday every week with odd numbers
22 = Switching time Monday - Friday every week with even numbers

Mode X3

03 = Switching time Saturday/Sunday every week
13 = Switching time Saturday/Sunday every week with odd numbers
23 = Switching time Saturday/Sunday every week with even numbers

Modus X4

$04=$ Switching time single day every week
$14=$ Switching time single day every week with odd numbers
$24=$ Switching time single day every week with even numbers
Mode X5
$05=$ Switching time gating single day every week
15 = Switching time gating single day every week with odd numbers
$25=$ Switching time gating single day every week with even numbers

Mode 6
$06=$ Cyclic pulses

The calendar weeks are calculated according to the DIN standard. Attention should be paid to the fact that some years include the $53^{\text {rd }}$ week resulting in the fact that two weeks with odd numbers are followed on each other.

For programming the switching times connect the programming cable to the PC (COM2) or computer and access the switching time editor. This program enables the entry, cancellation, display, and processing of switching times. The operation mode of the editor can be requested under "Help" after the start of program.
The different functions can be accessed after selection of the channel.
By setting a new switching time, the several input fields are touched and the respective values entered. The abbreviations of the priorities or rather the functions of the entry fields are stated underneath those fields.

The abbreviations have the following meanings:

Mod Mode - Entry of one of the above modes. The entry is always binary, e.g. 01 for daily
Etg Day of the week - Entry of the day of the week, e.g.
(1-7 for Monday - Sunday)
Ref. to modes that require no single day, enter 1

Tag Mon - Tag Mon (day month to day month)
Entry of the time period valid for the switching time (e.g. 01 01-31 $12 \Rightarrow 1$ Jan. - 31 Dec., briefly for the entire year)

Stu Min Sek - Stu Min Sek (hour minute second switching point to hour minute second tripping point) (e.g. 07 00 00-0700 $05 \Rightarrow$ switch on of the channel at 7.00 h ; switch off of the channel after 5 seconds)

1.2 Cyclic Switching Times

Mode 6 allows the output of pulses via the respective channel.
The first "Mode 6 Input" switches off all other modes and further "Mode 6 Inputs". The output is calculated back to the start of the day. Hence it is reasonable to set pulse width that are within an integer daily period (86400 divided by pulse without balance).

A logical value is entered in the fields up to the time.
The pulse duration is stated in the turn-on time and the pulse width in the turn-off time, e.g. pulse every 200 seconds (03 min 20 sec) for a duration of 17 seconds.

$$
06010101-3112000320-000017
$$

1.3 Special Cases

Switching times during the day change over:

For this two or rather three switching time needed to be entered
e.g. Switch-on daily at 23:50:00

Switch-off daily at 00:15:00
Switch-on between May, $1^{\text {st }}$ and June, $15^{\text {th }}$
Input Time Intervall
$01010105-1506235000-240000$
$01010105-1506000000-001500$

The balance turn-on time for June, $15^{\text {th }}$ is entered as follows
$01011606-1606000000-001500$

Switching times during the turn of the year:

For this two switching times needed to be entered
e.g. switching time valid from Oct, $1^{\text {st }}$ until March, $31^{\text {st }}$ every Friday from 20:00:00-22:00:00h
Entry Lines
$04050110-3112200000-220000$
$04050101-3103200000-200000$

1.4 Connecting Cable

$\mathbf{7 1 3 1}$	$\mathbf{P C}$
25 pole SUB-D Connector, female	9 pole SUB-D Connector, female
2	2
3	3
7	5

1.5 Supported Operating Systems

The 7131 switching time editor runs under Windows 3.x, Windows 95/98, Windows NT and Windows 2000.

2 Relay Board 7140

The output of channels is performed via the relay board 7140. Eight channels are put out via one board. The channel range is addressed via the address decoder.

Jumper	Position	1	Channel	$01-08$
$"$	$"$	2	$"$	$09-16$
$"$	$"$	3	$"$	$17-24$
$"$	$"$	4	$"$	$25-32$
$"$	$"$	5	$"$	$33-40$
$"$	$"$	6	$"$	$41-48$
$"$	$"$	7	$"$	$49-56$
$"$	$"$	8	$"$	$57-64$

Jumper settings please see the block diagram 7140.
The relay contacts are tapped via the screwing terminals.

	Channel									
01	09	17	25	33	41	49	57	Connection		
02	10	18	26	34	42	50	58	2	11	
03	11	19	27	35	43	51	59	3	13	
04	12	20	28	36	44	52	60	4	14	
05	13	21	29	37	45	53	61	5	15	
06	14	22	30	38	46	54	62	6	16	
07	15	23	31	39	47	55	63	7	17	
08	16	24	32	40	48	56	64	8	18	

The load of the relay is 24 V DC / 0.5 A .

The switching state of each relay is displayed by the appropriate LED in the front panel. LED on \Rightarrow relay activated.

2.1 Assignment of the VG Ledge - Board 7140

	a	c			
01	D0	D0	17	CS 2	CS 2
02	D1	D1	18		
03	D2	D2	19		
04	D3	D3	20		
05	D4	D4	21	PWFAIL	RESET
06	D5	D5	22	DCF Pulse	sim. DCF Pulse
07	D6	D6	23	ser. Pulse	ser. Data
08	D7	D7	24	1 Hz	1 kHz
09	A5	A5	25	Release IN \Rightarrow	Release OUT \Rightarrow
10	A4	A4	26		
11	R W	R / W	27	AURES IN \Rightarrow	AURES OUT \Rightarrow
12	E	E	28		
13	A0	A0	29	-12 V	-12 V
14	A1	A1	30	+12 V	+12 V
15	A2	A2	31	GND	GND
16	A3	A3	32	+5 V	+5 V

2.2 Block Diagram 7140

