Technische Beschreibung

GPS Satellitenfunkuhr 6870

Version 13.01 05.05.2004

Sicherheitshinweise

Die Sicherheitsvorschriften und technischen Daten dienen der fehlerfreien Funktion des Gerätes und dem Schutz von Personen und Sachen. Die Beachtung und Erfüllung ist somit unbedingt erforderlich. Bei Nichteinhaltung erlischt jeglicher Anspruch auf Garantie und Gewährleistung für das Gerät. Für eventuell auftretende Folgeschäden wird keine Haftung übernommen.

Gerätesicherheit

Dieses Gerät wurde nach dem aktuellsten Stand der Technik und den anerkannten sicherheitstechnischen Regeln gefertigt.

Die Montage des Gerätes darf nur von geschulten Fachkräften ausgeführt werden. Es ist darauf zu achten, dass alle angeschlossenen Kabel ordnungsgemäß verlegt und fixiert sind. Das Gerät darf nur mit der auf dem Typenschild angegebenen Versorgungsspannung betrieben werden.

Die Bedienung des Gerätes darf nur von unterwiesenen Personal oder Fachkräften erfolgen.

Reparaturen am geöffneten Gerät dürfen nur von entsprechend ausgebildetem Fachpersonal oder durch die Firma **hopf** Elektronik GmbH ausgeführt werden.

Vor dem Arbeiten am geöffneten Gerät oder vor dem Auswechseln einer Sicherung ist das Gerät immer von allen Spannungsguellen zu trennen.

Falls Gründe zur Annahme vorliegen, dass die einwandfreie Betriebssicherheit des Gerätes nicht mehr gewährleistet ist, so ist das Gerät außer Betrieb zu setzen und entsprechend zu kennzeichnen. Die Sicherheit kann z.B. beeinträchtigt sein, wenn das Gerät nicht wie vorgeschrieben arbeitet oder sichtbare Schäden vorliegen.

hopf Elektronik GmbH

Nottebohmstr. 41 58511 Lüdenscheid Postfach 1847 58468 Lüdenscheid

Tel.: ++49 (0)2351 / 9386-86 Fax: ++49 (0)2351 / 9386-93

Internet: http://www.hopf.com
e-mail: info@hopf.com

INHALT	Seite
1 Kurzbeschreibung Modell 6870	5
2 Einführung	6
3 Inbetriebnahme	7
3.1 Spannungsversorgung	7
3.2 Antenneninstallation	7
3.3 Default Taster in der Frontblende	7
3.4 LED "CLK"	7
3.5 Control LED C1-C3	7
3.6 Inbetriebnahme über Remotesoftware	8
3.6.1 Systemvoraussetzungen für die Remotesoftware	8
3.6.2 Installationshinweis für die Remotesoftware 3.6.3 Was Sie wissen sollten	8
3.6.4 Mögliche Fehlerursachen bei der Übertragung mit GPS-6870.EXE	10
4 Funktionsumfang der Remote-Software	11
4.1 Das File Setup Menü	11
4.1.1 Speichern des aktuellen Setup in einer Datei	11
4.1.2 Speichern der eingestellten Uhrendaten	11 11
4.1.3 Ansehen des aktuellen Setup 4.1.4 Übertragen des aktuellen Setup zur Uhr	11
4.1.5 Aufbau der Setup Datei	12
4.1.6 Überwachung des Ausgabetelegramm	13
4.1.7 Drucken der Setup Einstellungen	13
4.2 Initialisierung des GPS-Empfängers 4.2.1 Setzen von Uhrzeit und Datum	14 14
4.2.2 Eingabe der Umschaltzeitpunkte	15
4.2.3 Setzen der Differenzzeit UTC/Local	15
4.2.4 Setzen der Tagesdifferenz (day offset)	16
4.2.5 Setzen der Positionsdaten 4.2.6 Einstellung Empfangsmode Position fixed oder 3D-Auswertung	16 17
4.2.7 DCF77-Simulation und Funkbit	18
4.2.8 Einstellung der Optokopplerausgänge	19
4.2.9 Systembyte Einstellungen 4.2.10 Reset Funktion	21 23
4.3 Überwachung des GPS-Empfänger	23
4.3.1 Uhrzeit und Datum	23
4.3.2 Umschaltzeitpunkte	23
4.3.3 Differenz UTC/Local	23 23
4.3.4 Position 4.3.5 Empfangsqualität	23 24
4.3.6 Firmware Revision	25
5 Signal- und Datenausgabe	26
5.1 IRIG-B Signal	26
5.1.1 Stringaufbau	26
5.2 Konfiguration der seriellen Schnittstellen 5.2.1 Einstellung der seriellen Parameter	26 27
5.3 Konfiguration des Datentelegramms (Modebyte 1)	28
5.3.1 Time information output	28
5.3.2 Control Character	29
5.3.3 Control Character (CR, LF)	29
5.3.4 Forerun 5.3.5 Transmission Point of Time	29 29
5.3.6 Telegrammauswahl mit Modebyte 2	30
5.4 Datenformat der seriellen Übertragung	31
5.5 Serielles Anfragen	32
5.5.1 Serielles Anfragen bei Einstellung Standardstring 6021	32
5.5.2 Serielles Anfragen bei MADAM-S 5.5.3 Serielles Anfragen bei T-String, ABB-S-T und NGTS	32 32
5.5.4 Serielles Anfragen bei SINEC H1	32

INHALT	<u>Seite</u>
6 Datentelegramme	33
6.1 Allgemeines zur seriellen Datenausgabe der 6870	33
6.2 Datentelegramm 6870/6021 Uhrzeit und Datum	34
6.2.1 Datentelegramm 6870/6021 nur Uhrzeit	34
6.2.2 Status- und Wochentagnibble im Datentelegramm 6870/6021 Standard	35
6.2.3 Beispiel eines gesendeten Datentelegramm 6870/6021 (Standard)	35
6.3 Datentelegramm DCF-Slave	36
6.3.1 Status im Datentelegramm DCF-Slave	36
6.3.2 Beispiel eines gesendeten Datenstring DCF-Slave	37
6.3.3 Einstellung	37
6.4 Datentelegramm SINEC H1	38
6.4.1 Status im Datentelegramm SINEC H1 6.4.2 Beispiel eines gesendeten Datenstring SINEC H1	39 39
	40
6.5 Datentelegramm MADAM-S 6.5.1 Erforderliche Einstellung bei Ausgabe MADAM-S	40
6.5.2 Bedeutung der Statusnibble im Datentelegramm MADAM-S	42
6.6 Datentelegramm IBM 9037 / Sysplex Timer	43
6.6.1 Status im Datentelegramm IBM 9037 / Sysplex Timer	43
6.6.2 Beispiel eines gesendeten Datenstring IBM 9037 / Sysplex Timer	43
6.7 Datentelegramm 6870/6021 String 2000	44
6.7.1 Datentelegramm 2000 Status- und Wochentagnibble	45
6.7.2 Beispiel eines gesendeten Datenstring 2000	45
6.8 Datentelegramm T-String	46
6.8.1 Beispiel eines gesendeten Datenstring T-String	46
6.9 Datentelegramm ABB_T_S	47
6.10 Datentelegramm TimeServ für Windows NT Rechner	47
6.11 Datenstring für NTP (Network Time Protocol)	48
6.12 Datentelegramm NGTS-String	49
6.12.1 Beispiel eines gesendeten Datenstring NGTS	49
6.13 Master/Slave-String	50
6.13.1 Status im Datentelegramm Master/Slave	51
6.13.2 Beispiel eines gesendeten Datenstring Master/Slave	51
6.13.3 Einstellung	51
6.14 SPT-String	52
7 Schnittstelle und Schraubklemmen	54
7.1 Belegung des 9-poligen SUB-D Steckers	54
7.1.1 Version 1 - RS232 / RS422 (Standardbelegung)	54
7.1.2 Version 2 - RS232 / RS232	54
7.1.3 Version 3 - RS232 / TTY	54
7.1.4 Version 4 - RS232 / Impuls (PPS oder DCF77-Takt)	55
7.1.5 Version 5 - IRIG-B mit RS232 und RS422 7.1.6 Version 6 - RS232 / NGTS-Impuls	55 55
·	
7.2 Belegung der Schraubklemmen 7.2.1 Anschlußbeispiele für Optokoppler OC1-3	56 56
8 Technische Daten	58
8.1 Basissystem	58
8.2 GPS-Empfänger	58

1 Kurzbeschreibung Modell 6870

Die Funkuhr 6870 ist ein universell einsetzbares GPS¹ Empfangsmodul welches zur Steuerung industrieller Prozesse konzipiert wurde. Das Snap-In Modul ist mit diversen Schnittstellenkombinationen lieferbar.

Über die Schnittstellen lassen sich bis zu 16 verschiedene Protokolle ausgeben, mit denen Geräte unterschiedlicher Hersteller (Siemens, ABB, IBM, H+B) synchronisiert werden können.

Über drei potentialgetrennte Optokoppler können frei programmierbare Impulse zur Steuerung von SPS oder Messprozessen benutzt werden. Jeder Optokoppler kann eins von fünf Ausgabeprogrammen ausführen, wobei entweder zyklische Impulse generiert werden oder Statusinformationen an den Ausgängen anliegen.

Für DCF77² Systeme steht ein simuliertes Antennensignal zur Verfügung.

Weitere Merkmale sind:

- potentialgetrennter Antennenkreis,
- alle Einstellungen über serielle Schnittstelle parametrierbar,
- alle Ausgänge potentialgetrennt,
- verschiedene Schnittstellenkombinationen möglich, wie z.B. RS232/RS422, RS232/TTY(passiv), RS232/RS232.

Geliefert wird das Snap-In Modul mit:

- PC Schnittstellenkabel und
- Konfigurationssoftware auf CD-Rom.

4

¹ GPS = Global positioning system

² DCF77 = (D) Deutsches - (C) Langwellensignal - (F) Frankfurt a.M. - (77) Frequenz

2 Einführung

Die seit 1975 bewährten **hopf** Funk- u. Quarzuhrensysteme sind durch die GPS Empfangseinheit 6870 erweitert worden. Dadurch ist ein weltweiter Einsatz dieser Zeitbasis mit höchster Präzision möglich.

Die Zeitbasis wird durch das global installierte Satelliten Navigationssystem GPS synchronisiert. In ca. 20 000 km Höhe bewegen sich, auf unterschiedlichen Bahnen und Winkeln, Satelliten zweimal am Tag um die Erde (siehe Bild im Anhang). An Bord eines jeden Satelliten befindet sich eine hochgenaue Atomuhr (Genauigkeit min. 1 x 10 ⁻¹²). Von der GPS Empfangseinheit werden Bahnpositionen sowie eine GPS-Weltzeit, von möglichst vielen Satelliten empfangen. Aus diesen Werten wird zuerst die Position des Empfängers bestimmt. Ist die Position bekannt, so kann daraus die Laufzeit der empfangenen GPS-Weltzeit, von einem Satelliten, bestimmt werden. Die Genauigkeit der Zeit ist daher in erster Linie abhängig von der Güte der Positionsbestimmung.

Aus der GPS-Weltzeit (GPS-UTC) wird durch Subtraktion der Schaltsekunden die Weltzeit UTC¹ berechnet, z.Zt. (Stand 1994) läuft die Weltzeit acht Sekunden hinter GPS-UTC her. Die Differenz ist nicht konstant, sie ändert sich jeweils mit der Einfügung von Schaltsekunden. Über die Tastatur des Systems können für jeden Ort der Erde, die Differenz zur UTC-Zeit sowie regionale Umschaltpunkte für Sommer- / Winterzeit eingegeben werden. Dadurch steht für die weitere Verarbeitung die lokale Zeit mit hoher Präzision zur Verfügung.

Folgende Schnittstellen stehen standardmäßig zur Verfügung:

- serielle RS232 Schnittstelle
- serielle RS422 Schnittstelle
- DCF77 simulierter Antennen Ausgang
- 3 Optokopplerausgänge

Andere Schnittstellen wie TTY oder 2xRS232 stehen als Optionen zur Verfügung.

_

¹ UTC = Universal time coordinated

3 Inbetriebnahme

3.1 Spannungsversorgung

Das System wird mit einer Spannung von 18-60V DC versorgt. Beim Anschluss der Spannung ist auf richtige Spannungshöhe und Polarität zu achten. Da das Snap-In Modul intern komplett potentialgetrennt ist, muss es an der Rückseite über die gekennzeichnete Erdungsschraube auf das gewünschte Potential gebracht werden.

HINWEIS:

EIN VERPOLEN DER BETRIEBSSPANNUNG ZERSTÖRT DIE BAUGRUPPE NICHT. ES FLIEßT KURZZEITIG EIN STROM VON 1A. NACH EINER VERPOLUNG IST DAS GERÄT FÜR 20 SEC SPANNUNGSFREI ZU SCHALTEN. DIE INBETRIEBNAHME DARF NUR VON FACHPERSONAL DURCHGEFÜHRT WERDEN.

3.2 Antenneninstallation

Die Verbindung zur Antennenanlage erfolgt über die mit "GPS-In" bezeichneten Buchse.

Die korrekte Installation der Antennenanlage ist dem Anhang GPS zu entnehmen.

3.3 Default Taster in der Frontblende

Mit dem Taster "**DEF.**" in der Frontblende wird die Uhr in den Auslieferungszustand versetzt. Der Taster muss für ca. 10 Sekunden betätigt werden, bis die LED **"CLK"** aufhört zu blinken. Nach dem Loslassen sind die Standardeinstellungen in der Uhr eingestellt.

Es werden nur die Parameter der 1. Schnittstelle (COM 0) gesetzt!

Auslieferungszustand:

- Baudrate 9600 Baud
- 8 Datenbit
- 1 Stoppbit
- · keine Parity
- Sendestring (6021)
- mit Steuerzeichen (STX/ETX)
- · ohne Sekundenvorlauf
- senden jede Sekunde

3.4 LED "CLK"

Die grüne LED in der Frontblende signalisiert den Synchronisationszustand der Uhr. Das Blinken im 2 Hz-Takt bedeutet "Uhr läuft im Quarzbetrieb". Dieser Zustand wird nach Einschalten der Uhr sowie bei Überschreiten der Time-Out Zeit für das Funkbit (siehe Pkt. DCF77-Simulation und Funkbit) bei einer Empfangsstörung angezeigt. Im Funkbetrieb leuchtet die CLK-LED im 1Hz-Takt.

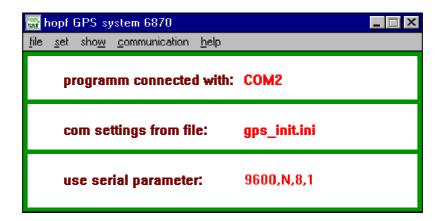
3.5 Control LED C1-C3

Mit den LED C1-C3 werden die Schaltzustände der 3 Optokoppler angezeigt. Das Aufleuchten einer LED signalisiert, dass der korrespondierende Optokoppler durchgeschaltet ist.

3.6 Inbetriebnahme über Remotesoftware

Alle Einstellungen am Gerät werden mit der mitgelieferten Servicesoftware (**GPS_6870.EXE**) über eine der beiden Schnittstellen vorgenommen.

Es darf immer nur <u>eine</u> Servicesoftware über <u>eine</u> Schnittstelle gleichzeitig auf das Gerät zugreifen!


3.6.1 Systemvoraussetzungen für die Remotesoftware

Das Programm benötigt einen PC/Notebook mit einer freien seriellen Schnittstelle und dem Betriebssystem Microsoft Windows ab 3.x, 95, oder NT. Eine freie serielle Schnittstelle (COM 1 ... COM 8) wird für den Datenverkehr mit der Uhr benötigt. Die Software überprüft vor Beginn einer Datenübertragung das Vorhandensein eines freien COM Anschlusses.

3.6.2 Installationshinweis für die Remotesoftware

Die Software wird auf einer 3,5 Zoll Diskette geliefert und sollte in ein eigenes Verzeichnis auf dem Remote Rechner (PC) kopiert werden (z.B. **C:\HOPF6870**). Das mitgelieferte serielle Schnittstellenkabel wird zwischen Rechner und GPS-System angeschlossen. Damit ist die Software einsatzbereit. Nach Anschluss der Versorgungsspannung sowie der Antenne kann das Programm gestartet werden.

Die Software sucht sich den <u>ersten</u> freien COM-Port (1-8) automatisch und zeigt die Verbindung in der Zeile **"programm connected with"** im Hauptfenster der Anwendung an. Dieser Mechanismus kann übergangen werden (siehe Pkt. Was Sie wissen sollten). Hier werden auch die aktuellen Parameter für die serielle Kommunikation sowie die evtl. benutzte Datei für serielle Parameter angezeigt. Soll mit einem anderen Port gearbeitet werden, ist das Programm so oft hintereinander zu starten, bis der gewünschte Port angesprochen wird. Dieser Port kann in der Datei GPS_INIT.INI eingestellt werden (siehe 3.6.3).

Im Hauptfenster der Anwendung finden sich alle von Windows her bekannten Bedienelemente wie Pulldown-Menüs, Schalter etc. Sie können die Bedienung der Software wahlweise mit einer Maus oder über die Tastatur Ihres Rechners vornehmen.

Für Einsteiger in Windows ist es ratsam mit Hilfe des Windows Lernprogramm die Bedienung von Anwendungen unter Windows zu erlernen. Sie starten das Lernprogramm im Programmmanager oder Explorer unter dem Menüpunkt **Hilfe**. Weitere Hinweise zur Bedienung von Windows Anwendungen finden Sie in Ihrem Microsoft Windows Benutzerhandbuch.

3.6.3 Was Sie wissen sollten

GPS_6870.EXE stellt bei Erstinstallation (Datei **GPS_INIT.INI** muss fehlen!) die Übertragungsparameter in dem PC für die Kommunikation mit der GPS Anlage auf folgende Werte ein.

- · Baudrate 9600 baud
- Datenbit 8
- Stoppbit 1
- Paritybit no

Diese Werte müssen ebenfalls in der Uhr aktiviert sein (Auslieferungszustand). Sie können den Auslieferungszustand auch durch Betätigen der Resettaste herstellen (nur COM 0 / siehe Pkt. Auslösen eines Reset).

Das Ändern der Parameter in der Uhr erfordert auch eine Einstellungsänderung des COM-Port Ihres Rechners. Aus diesem Grund werden geänderte Parameter in einer Textdatei gespeichert, damit sie nach einem erneuten Aufruf des Programm zur Verfügung stehen. Diese wird automatisch beim Verstellen der Parameter angelegt.

Die Datei befindet sich im selben Verzeichnis wie das Programm **GPS_6870** und hat den Namen:

GPS INIT.INI

Diese Datei kann, falls erforderlich, manuell editiert werden. Hierbei gilt, dass die Einstellungen den Werten der jeweiligen Schnittstelle in der Uhr entsprechen müssen.

Aufbau der Datei GPS_INIT.INI:

[serial Parameter] String=9600,N,8,1

Geändert werden darf nur der Parameterteil des Eintrags String=

Wurde aufgrund geänderter Parametereinstellungen die Datei GPS_INIT.INI angelegt, so werden bei jedem Programmstart die darin enthaltenen Einstellungen benutzt.

Beispiel:

alt 9600,N,8,1 neu 19200,E,7,2

Nach Speichern der Datei und einem Neustart von **GPS_6870.EXE** arbeitet das Programm mit diesen Einstellungen.

<u>HINWEIS:</u> IM ZWEIFELSFALL KÖNNEN SIE DIE DATEI **GPS_INIT.INI** EINFACH LÖSCHEN. DAS PROGRAMM STARTET ANSCHLIEßEND MIT DER O.G. STANDARDEINSTELLUNG.

Ab Version 4.02 der Remotesoftware kann durch den folgenden Eintrag in der Datei **GPS_INIT.INI** ein serielles Port des Rechners voreingestellt werden.

[serial Parameter]
Port=COM1

Ist die obige Zeile in der Datei **GPS_INIT.INI** vorhanden erscheint beim Programmstart ein Hinweisfenster, das mit diesem Port gearbeitet wird.

Sie können im Menü **communication** unter den Punkten **load/save serial parameter** individuelle Einstellungen speichern und laden. Das Programm legt diese Initialisierungsdateien für individuelle Benutzerkonfigurationen mit der Erweiterung "*.CST" ab. Diese Dateien können analog zur oben beschriebenen Init-Datei manuell editiert werden. Nach dem Laden einer CST Datei übernimmt das Programm automatisch die neuen Einstellungen und zeigt sie im Hauptfenster an.

3.6.4 Mögliche Fehlerursachen bei der Übertragung mit GPS-6870.EXE

• Überprüfen Sie, ob das Verbindungskabel PC-Uhr defekt ist. Es muss eine Verbindung zwischen folgenden Signalen bestehen.

HINWEIS:	

DA IN ABHÄNGIGKEIT DER SCHNITTSTELLENVARIANTE NOCH WEITERE SIGNALE AN DEM 9-POLIGEN SUB-D STECKER **X2** ANLIEGEN, DÜRFEN FÜR DIE KOMMUNIKATION MIT DER REMOTESOFTWARE <u>NUR</u> DIE FOLGENDEN VERBINDUNGEN BESTEHEN.

PC	Pin	Uhr	Pin
TxD	3	RxD	2
RxD	2	TxD	3
GND	5	GND	5

- Überprüfen Sie ob das Verbindungskabel an der von GPS_6870.EXE angegebenen Schnittstelle angeschlossen ist.
 - Sollte trotz richtigem Anschluss keine Übertragung zur 6870 möglich sein, liegt ein Fehler in der Parametereinstellung für die Schnittstelle des PC und des Snap-In Moduls vor. In diesem Fall muss die Taste "DEF" für 10 Sekunden gedrückt werden um die Schnittstelle der 6870 in Standardeinstellung zu setzen. Anschließend muss das Programm GPS_6870.EXE beendet, die Datei GPS_INIT.INI auf dem PC gelöscht und das Programm GPS_6870.EXE erneut gestartet werden.
- Modul 6870 nicht betriebsbereit (z.B. durch Ausfall der Versorgungsspannung)

<u>4 Funktionsumfang der Remote-Software</u>

Das Hauptmenü der Software ist in fünf Funktionsgruppen unterteilt:

(FILE): Hier befinden sich Befehle zum Speichern, Laden, Drucken, An-

sehen und Konfigurieren der Funkuhr mittels Setup Mechanismus. Außerdem gibt es eine Funktion zur Kontrolle des ausge-

gebenen Datentelegramm.

(SET): Initialisierung des GPS-Empfänger und Konfiguration der Opto-

koppler Ausgänge

(SHOW): Überwachung der GPS-Systemeinstellungen und Ausrichten der

Antenne.

(COMMUNICATION): Einrichten der Schnittstellen zur seriellen Datenübertragung.

(HELP): Hilfe und Information über den Programmstand.

4.1 Das File Setup Menü

Alle vorgenommenen Einstellungen aus den Menüpunkten "SET" und "COMMUNICATION" können in eine externe Setup Datei geschrieben werden, um damit weitere Uhren zu konfigurieren. Die Setup Datei kann manuell editiert werden. Weitere Information hierzu erhalten Sie unter dem Pkt. "Aufbau der Setup Datei" und im Programmierhandbuch der Uhr.

4.1.1 Speichern des aktuellen Setup in einer Datei

Mit dieser Funktion können alle bisher zur Uhr übertragenen Einstellungen gemeinsam in einer Datei gespeichert werden. Damit ist es möglich zu einem späteren Zeitpunkt weitere Uhren mit den gleichen Einstellungen in einem Arbeitsgang zu konfigurieren.

Zuerst müssen alle für die Konfiguration benötigten Informationen zur Uhr übertragen werden. Danach können durch Aufruf des Menüpunkt "save actual setup to file" die aktuellen Einstellungen in einer Datei mit der Endung "*.stp" gespeichert werden.

4.1.2 Speichern der eingestellten Uhrendaten

Damit die gesamten eingestellten Uhrendaten in einer externen Datei auf dem Rechner abgespeichert werden können, muss mit Hilfe des Menüpunktes "load setup from device" das komplette Setup aus der Uhr auf den Rechner übergeben werden. Hiernach kann man die kompletten Daten mit "save actual setup to file" in einer Datei abspeichern.

4.1.3 Ansehen des aktuellen Setup

Alle bisher zur Uhr übertragenen oder aus einer Datei geladenen Einstellungen können durch Aufruf des Menüpunkt **"show actual setup"** in einem Fenster überprüft werden. Die Darstellung erfolgt in vier Gruppen

- Systeminformationen (Umschaltdatum, Differenzzeit, Empfangsmode, DCF77-Simulation, Synchronisationsbit, Systembyte und Position)
- 2. Schnittstellenkonfiguration COM 0 (Parameterbyte, Modebyte 1, Modebyte 2)
- 3. Schnittstellenkonfiguration COM 1 (Parameterbyte, Modebyte 1, Modebyte 2)
- 4. Einstellungen der Optokoppler (OK 1 bis 3)

4.1.4 Übertragen des aktuellen Setup zur Uhr

Mit dem Menübefehl "send setup to device" werden die aktuell geladenen oder vorgenommenen Einstellungen zur Uhr in einem Arbeitsgang zur Uhr übertragen. Nach Aktivierung des Menüpunkt erscheint ein Statusfenster mit der Aufforderung "start" oder "exit". Durch Betätigung des "start" Schalter werden die aktuellen Einstellung zur Uhr übertragen. Mit dem "exit" Schalter verlassen Sie das Unterprogramm.

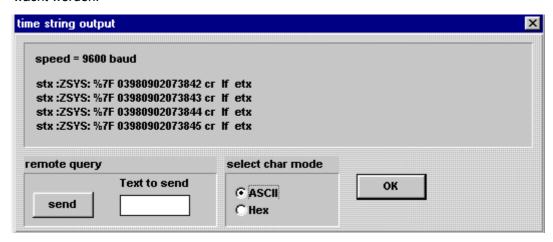
Während der Übertragung werden im Statusfenster die gerade zur Uhr gesendeten Einstellungen aufgelistet. Es werden nur die Einstellungen zur Uhr gesendet, zu denen ein Eintrag vorhanden ist. Der erfolgreiche Abschluss wird mit dem Hinweis "system settings successfully stored!" angezeigt. Sollte die Übertragung der Einstellungen nicht gelingen (z.B. durch Versorgungsspannungsausfall des Moduls 6870) erscheint die Meldung "GPS-system did not accept parameter". Für diesen Fall siehe Pkt. 3.6.4 Mögliche Fehlerursachen.

4.1.5 Aufbau der Setup Datei

Die Setup Dateien können auch manuell geändert werden, dabei ist allerdings folgendes zu beachten:

- 1. Es wird zwischen Groß- und Kleinschreibung unterschieden.
- 2. Zwischen den Gleichheitszeichen darf kein Leerzeichen stehen.
- 3. Soll ein Eintrag leer bleiben, so muss der Teil links neben dem Gleichheitszeichen und das Zeichen selbst stehen bleiben.
- 4. Ein Semikolon macht den Rest der Zeile zum Kommentar.
- 5. Die Einstellungen müssen von der Uhr interpretiert werden können, fehlerhafte Einträge können zum Fehlverhalten der Uhr führen. Für eine genauere Beschreibung der einzelnen Einträge sehen Sie bitte im Programmierhandbuch der Uhr nach.

```
[COM 0]
                                     ; Bereich Schnittstelle COM 0
String=PAR:09600, N, 8, 1
                                     ; Parameter der seriellen Übertragung
Mode1=MOD:1,1,0,1,1,0,0,0
                                     ; Modebyte 1
Mode2=M01:0,0,0,0,0,0,0,0
                                     ; Modebyte 2
[COM 1]
                                     ; Bereich Schnittstelle COM 1
String=PA1:02400, N, 8, 1
                                     ; Parameter der seriellen Übertragung
Mode1=MO2:1,1,1,1,1,0,0,1
                                     ; Modebyte 1
Mode2=MO3:0,0,0,0,1,0,0,0
                                     ; Modebyte 2
[System]
                                     ; Bereich Systemeinstellungen
ChangeOver=COS: 4A, 02, 03, 52, 03, 10
                                     ; Umschaltzeiten Sommer/Winter
Difference=DIF:+01,00
                                     ; Differenzzeit UTC/Local
Reception=SAT:0
                                     ; Empfangsmode 3D/position fixed
Simulation=DCF:02,C8,64,02
                                     ; DCF77-Simulation und Funkbit
SysByte=SYB:0,1,0,1,0,1,0,1
                                     ; Systembyte Einstellungen
Position=POS:E:007,39,81,N:51,12,69; Positionsdaten
[Pulses]
                                     ; Bereich Optokoppler
ok1=IMP:1,02,00,00,00,00,00,00,00
                                     ; Einstellung für Optokoppler 1
ok2=IMP:2,02,00,00,00,00,00,00,00
                                     ; Einstellung für Optokoppler 2
ok3=IMP:3,02,00,00,00,00,00,00,00
                                     ; Einstellung für Optokoppler 3
```


HINWEIS:

DIE EINTRÄGE RECHTS NEBEN DEM GLEICHHEITSZEICHEN ENTSPRECHEN DEN ÜBERTRAGENEN KONFIGURATIONSTELEGRAMMEN (OHNE STEUERZEICHEN) ZUR UHR WIE IM PROGRAMMIERHANDBUCH BESCHRIEBEN.

4.1.6 Überwachung des Ausgabetelegramm

Unter dem Menüpunkt "test serial output" können die seriellen Ausgabetelegramme überwacht werden.

In der Zeile "speed = 9600 baud" wird die aktuell eingestellte Baudrate angezeigt.

Die Datenausgabe kann mit dem Feld **"select char mode"** zwischen den Betriebsarten AS-CII/Hex umgeschaltet werden. Im Bild oben ist der Ausgabemode **"ASCII"** gewählt.

Die einzelnen Zeichen werden als ASCII Zeichen interpretiert und ausgegeben. Die Steuerzeichen STX, SOH, ETX, CR und LF werden als String dargestellt. Die restlichen Steuerzeichen werden hexadezimal mit vorangestelltem Prozentzeichen ausgegeben (im Beispiel %7F). Wenn das letzte Zeichen verzögert und mit drei vorangestellten Punkten erscheint, so ist der Mechanismus "letztes Steuerzeichen zum Sekundenwechsel" aktiviert.

In der Betriebsart "Hex" werden alle Zeichen als Hexadezimalwert ausgegeben. Eine übertragene ASCII "1" würde also mit "31" angezeigt.

Im Editierfeld "Text to send" kann ein Anfragestring eingegeben werden, der mit dem "send" Schalter zur Uhr übertragen wird. Mit dem "OK" Schalter verlassen Sie den Dialog.

HINWEIS:

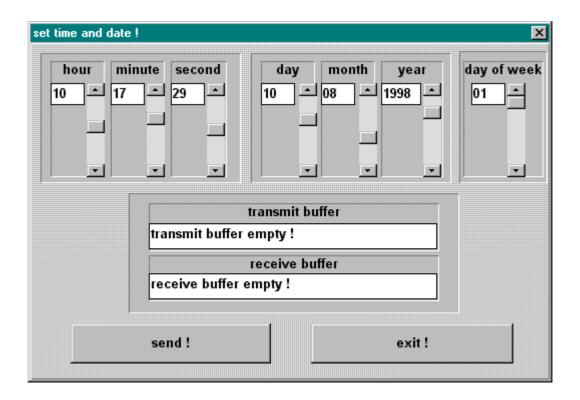
Wenn Sie eine Baudrate eingestellt haben, bei der die Übertragung des gesamten String länger als eine Sekunde dauert, kann es zu einem Fehlverhalten des Ausgabemechanismus kommen. Das gilt auch bei eingestelltem Mechanismus "Ausgabe letztes Steuerzeichen zum Sekundenwechsel" wenn die Anfrage über den "Send" Schalter kurz vor dem Sekundenwechsel kommt.

4.1.7 Drucken der Setup Einstellungen

Mit diesem Menüpunkt können Sie die aktuellen Setup Einstellungen auf einem angeschlossenen Drucker ausgeben. Die Ausgabe erfolgt analog zum Menüpunkt "Setup ansehen".

4.2 Initialisierung des GPS-Empfängers

Das Einstellen von Startwerten in der GPS-Anlage bei Inbetriebnahme beschleunigt das Synchronisieren der Uhr. Eine Eingabe von Startwerten muss nicht unbedingt erfolgen. Der erste Funkempfang kann allerdings ohne Initialisierung bis zu 4 Stunden dauern.

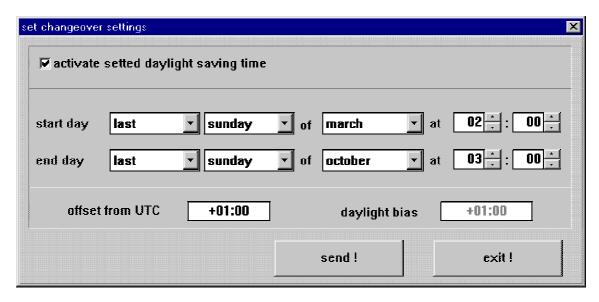

Ein Setzen des Systems mit Startwerten sollte folgenden Ablauf haben:

- Eingabe der aktuellen Local Zeit
- Eingabe der Positionsdaten
- Eingabe der Differenzzeit UTC-Local
- Eingabe der Umschaltzeitpunkte
- Reset der Uhr auslösen (nach dem nächsten Minutenwechsel)

Nachfolgend werden die einzelnen Menüpunkte des Programm erklärt.

4.2.1 Setzen von Uhrzeit und Datum

Sie erreichen die Uhrzeit-Setzen Funktion unter dem Menüpunkt "set" und dem Eintrag "time and date". Es erscheint der "set time and date" Dialog. Das Programm übernimmt automatisch die im Rechner eingestellte Zeit in die Editierfelder des Dialoges.



Sie ändern die Zeit durch Verschieben der Scroll Leisten neben den Anzeigefeldern. Nach Einstellung der korrekten Zeit starten Sie die Übertragung zur Uhr mit dem "send" Schalter. In dem Statusfeld "transmit buffer" erscheint das zur Uhr gesendete Telegramm. Bei erfolgreicher Übertragung wird das gleiche Telegramm im "receive buffer" angezeigt.

4.2.2 Eingabe der Umschaltzeitpunkte

Sie erreichen die Umschaltzeitpunkt-Setzen-Funktion unter dem Menüpunkt "set" und dem Eintrag "changeover date". Es erscheint der "set changeover settings" Dialog.

Vor dem Aktivieren des Dialogs werden die aktuellen Einstellungen aus der Uhr ausgelesen und in den Editierfeldern dargestellt. Hier werden jetzt die Zeitpunkte eingegeben, an denen im Laufe eines Jahres am Einsatzort auf Sommer- oder Winterzeit umgeschaltet wird.

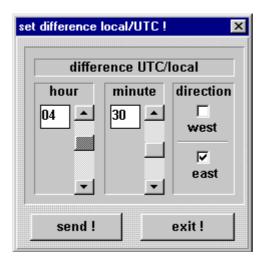
In der Zeile **start day** wird der Startzeitpunkt für die Sommerzeit angegeben. Die Zeile **end day** bezeichnet den Endzeitpunkt für die Sommerzeit. Die Umschaltung kann wahlweise am ersten, zweiten, dritten, vierten oder letzten Wochentag im Monat erfolgen. Zusätzlich ist eine Zeitangabe in Stunden und Minuten erforderlich.

Die Umschaltzeitpunkte können nur gesetzt werden, wenn automatically set daylight saving time aktiviert wurde. Die Umschaltung wird nur dann ausgeführt, wenn die Checkbox automatically set daylight saving time angeklickt wurde. Die Felder offset from UTC und daylight bias haben nur informellen Charakter.

Nach Eingabe der Daten starten Sie die Übertragung zur Uhr mit dem **"send"** Schalter. Es erscheint ein "Popup-Fenster" mit dem Hinweis, dass die Information von der Uhr übernommen wurden.

HINWEIS: WIRD KEINE UMSCHALTUNG GEWÜNSCHT, SO IST "AUTOMATICALLY SET DAYLIGHT SAVING TIME" ZU DEAKTIVIEREN UND ANSCHLIEßEND MIT "SEND" ZU BESTÄTIGEN.

4.2.3 Setzen der Differenzzeit UTC/Local


Mit dieser Funktion wird die Zeitdifferenz, zwischen der lokalen Zeit und der Weltzeit (UTC-Zeit), eingegeben.

Die Eingabe der Differenzzeit erfolgt in Stunden und Minuten, erweitert um die Information ob der Einsatzort westlich oder östlich des 0 Breitengrades (Greenwich) liegt.

z.B. West 08:00 für die USA und Kanada (Pacific Time)

z.B. East 09:30 für Adelaide Australien

Sie erreichen die Differenzzeit-Setzen-Funktion unter dem Menüpunkt "set" und dem Eintrag "difference local/UTC". Es erscheint der "set difference local/UTC" Dialog.

Geben Sie die aktuellen Daten in die Felder für Stunde und Minute durch Betätigen der Scroll-Leisten ein. Klicken Sie das richtige Schaltfeld für Richtung (West/Ost) an.

Nach Eingabe der Daten starten Sie die Übertragung zur Uhr mit dem **"send"** Schalter.

Die Übernahme der neuen Differenzzeit in der Uhr findet zum nächsten Minutenwechsel statt.

4.2.4 Setzen der Tagesdifferenz (day offset)

Diese Funktion ist nur in Verbindung mit der Sondersoftware FG687083 verfügbar.

In Verbindung mit dieser Software ist die NGTS-Impulsausgabe und die DCF77-Taktausgabe nicht verfügbar. Außerdem ist als Zeitbasis nur die "Lokale Zeit" für DCF77-Sim und IRIG-B gültig.

4.2.5 Setzen der Positionsdaten

Mit dieser Funktion wird die geographische Position der Anlage eingegeben. Diese Funktion ist bei der ersten Inbetriebnahme hilfreich aber nicht notwendig. Sie verkürzt den Neuinitialisierungszeitraum des GPS-Empfängers.

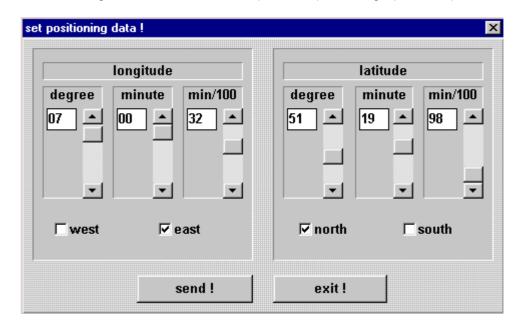
Die Eingaben für die Breiten- und Längenposition erfolgt in Grad, Minuten und 1/100 Minuten.

Zusätzlich muss für den Breitengrad (Latitude) folgende Information angegeben werden.

North = nördliche Erdhalbkugel
South = südliche Erdhalbkugel
Beispiel: Nord 51°12,36 51

Die Eingabe für den Längengrad (Langitude) benötigt die Information

East = östlich des Null Meridians
West = westlich des Null Meridians


Beispiel: East 007°37,8426

Der GPS-Empfänger benötigt für ein schnelleres Synchronisieren nur die Eingabe der ungefähren Position. Für die im oberen Beispiel genannte genaue Position würde auch folgende Eingabe reichen:

North 50°00,0000 East 007°00,0000

Sie erreichen die Position-Setzen-Funktion unter dem Menüpunkt "set" und dem Eintrag "position". Es erscheint der "set positioning data" Dialog. Geben Sie die aktuellen Daten in die Felder für Länge und Breite in Grad, Minuten und Min/100 durch Betätigen der Scroll-Leisten ein

Klicken Sie die richtigen Schaltfelder für Breite (Nord/Süd) und Länge (West/Ost) an.

Nach Eingabe der Daten starten Sie die Übertragung zur Uhr mit dem **"send"** Schalter. Es erscheint ein "Popup-Fenster" mit dem Hinweis, dass die Information von der Uhr übernommen wurde.

4.2.6 Einstellung Empfangsmode Position fixed oder 3D-Auswertung

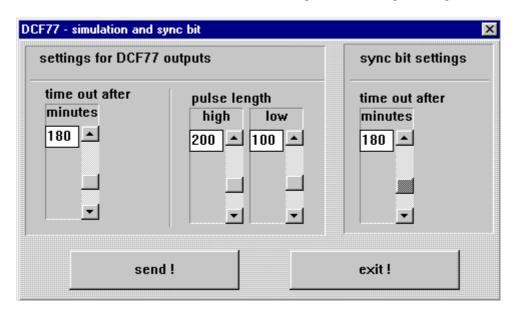
Die Genauigkeit der Zeitauswertung wird von der genauen Positionsberechnung des Einsatzortes bestimmt. Für diese Berechnung ist der Empfang vom mindestens 4 Satelliten (3D-Auswertung) notwendig. Mit der errechneten Position werden die Signallaufzeiten zu mehreren Satelliten bestimmt und aus deren Mittelwert die genaue Sekundenmarke erzeugt. Die Sekundenmarke hat in diesem 3D Auswertemodus eine Genauigkeit von \pm 1 μ sec.

In vielen Fällen reicht aber bei stationären Installationen eine schlechtere Auswertung der Sekundenmarke z.B. bis zu einigen Millisekunden aus. In dem Position-fixed Modus hängt die Genauigkeit wesentlich von der exakten Eingabe der Position des Aufstellungsortes ab. Die Berechnung der Sekundenmarke wird dann schon mit einem Satelliten und der eingegebenen Position berechnet. Bei einer Eingabe der Position bis auf \pm 1 Minutengrad ist die Genauigkeit der Sekundenmarke bereits besser als \pm 20 µsec. Bei noch genauerer Eingabe kann auch wieder der Wert von \pm 1 µsec. erreicht werden.

Der Vorteil des Position-fixed Modus ist, dass die Uhr mit nur einem Satelliten synchronisiert. Die Antenne kann auch an Orten installiert werden, an denen weniger als ¼ des Himmels sichtbar ist.

In vielen Fällen ist eine Innenmontage der Antenne am Fenster möglich (kurze Kabel, kein Blitzschutz). Sind in diesem Modus 4 Satelliten vorhanden, so springt die Auswertung automatisch in den **3D**-Modus und berechnet die genaue Position, dadurch erhöht sich die Genauigkeit bei einem Satelliten auf \pm 5 µsec. In der Remotesoftware wird aber weiter Position-fix angezeigt.

Nach Anwahl des Menüpunkt "set" kann unter "mode of reception" der Empfangsmode eingestellt werden. Es erscheint der Dialog "quality of reception". Im Listfenster "mode of reception" kann der eingestellte Mode abgelesen werden (siehe auch Pkt.: Empfangsqualität).


4.2.7 DCF77-Simulation und Funkbit

Unter diesem Menüpunkt wird die Ausgabe der DCF77-Simulation und des Funkbit (siehe Impulsausgabe Mode 2 sowie Statusinformation in den seriellen Datentelegrammen) konfiguriert.

Der Sender DCF77 strahlt ein Telegramm aus, das mit einem Bit pro Sekunde die Zeitinformation übermittelt. Die 100 bzw. 200 msec langen Impulse (Absenkung der Amplitude) kodieren die digitale Information (0/1). Die schmalbandigen Antennen einiger Funkuhren verfälschen die Dauer der Absenkung und der nachgeschaltete Empfänger ist aus diesem Grund auf andere Impulslängen abgestimmt.

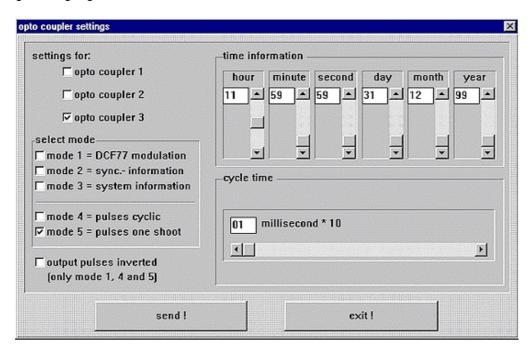
Die Basisuhrzeit für die DCF77-Simulation kann mit dem Systembyte verändert werden (siehe Pt. 4.6.4).

Die Breite der Low- und High-Impulse für die DCF77-Simulation kann zum Betrieb an solchen Fremdprodukten justiert werden. Sie erreichen den "DCF77-simulation and sync. bit" Dialog unter dem "set" Menü. Nach Anwahl wird die abgebildete Dialogbox dargestellt.

In dem Gruppenfenster "pulse length" werden die Längen für High- und Low-Impulszeit der DCF77-Simulation gewählt. Mit dem Scrollbar "time out after xx minutes" kann die Ausgabe der Simulation bei Wechseln in den Quarzbetrieb nach der eingestellten Zeit (2-254 Minuten) abgeschaltet werden. Ist der Wert auf 255 gesetzt wird die Simulation nicht abgeschaltet. Diese Einstellungen wirken auf die DCF77 Antennensimulation über die BNC-Buchse in der Frontblende und auf eine evtl. eingestellte DCF77-Simulation an den Optokopplern sowie auf die Status LED in der Frontblende.

Die Weitergabe der Information **"Funk"** (Umschaltung von Funk- auf Quarzbetrieb) kann mit der Scroll Leiste der Gruppe **"sync bit settings"** mit einer Verzögerung im Bereich 2-254 Minuten versehen werden. Ist der Wert auf 255 gesetzt wird die Information **"Funk"** ständig weitergegeben. Dazu muss die Uhr einmal funksynchron gewesen sein. Dieser Mechanismus wirkt auf die Übertragung des Synchronisationsstatus in den ausgegebenen Datentelegrammen der seriellen Schnittstelle und auf ein evtl. eingestelltes Funkbit an den Optokopplern. Dazu muss die Uhr vorher funksynchron gewesen sein (siehe auch Punkt 4.2.9 Systembyte Einstellungen).

Die Möglichkeit der verzögerten Abschaltung von DCF77-Simulation und Funkbit dient zur Überbrückung von kleinen Empfangslücken, bei denen das Uhrenmodul 6870 durch seine interne Regelung die geforderte Genauigkeit nicht unterschreiten würde.



Beispiel:

Wird eine Genauigkeit von besser 1 msec gefordert, so dürfte ein am Ausgang erzeugter Sekundenimpuls nicht mehr als ±1 msec von der absoluten Zeitmarke abweichen. Bei der maximal auftretenden Quarzdrift (0,1 ppm) im Freilauf würde dieser Wert nach 1000/0,1 = 10.000 Sekunden erreicht. Eine Signalisierung des Quarzbetrieb wäre demnach erst nach 166 Minuten erforderlich.

4.2.8 Einstellung der Optokopplerausgänge

Das Uhrenmodul verfügt über drei Optokopplerausgänge die unterschiedliche Aufgaben übernehmen können. Sie erreichen den **"opto coupler settings"** Dialog unter dem **"set"** Menü. Nach Anwahl wird die abgebildete Dialogbox dargestellt. Durch Anklicken der Checkbox für Optokoppler 1-3 im linken oberen Teil des Dialog erscheint die aktuelle Einstellung für den jeweiligen Ausgang.

Die einzelnen Funktionen werden als Mode bezeichnet und im Gruppenfenster "select mode" angewählt. Es ist jeweils nur eine Einstellung aktivierbar. Je nach angewählter Funktion (Mode) können Zeitinformationen im Gruppenfenster "time information" und Impulsbreiten-Werte im Fenster "cycle time" eingestellt werden. Ist für den ausgewählten Mode keine Zeiteinstellung vorgesehen, erscheint ein "xxx" in den betreffenden Editierfeldern. Durch Aktivierung der Checkbox "output pulses inverted" können in den Modi 1, 4 und 5 die Impulse invertiert ausgegeben werden. Bei den Einstellungen Mode 2 und 3 macht diese Funktion keinen Sinn, da bei einem Spannungsausfall eine Fehlinformation an den Ausgängen anliegen würde. In den nachfolgenden Absätzen wird eine genaue Beschreibung der einzelnen Modi gegeben. Die Einstellungen für die einzelnen Optokoppler müssen jeweils einzeln gesendet werden.

HINWEIS:

IST IM MODE 5 DER WERT FÜR DEN TAG UND DEN MONAT AUF "00" GESETZT, DANN WIRD JEDEN TAG EIN IMPULS ZUR EINGESTELLTEN UHRZEIT AUSGEGEBEN.

4.2.8.1 DCF77-Simulation (Mode 1)

Als DCF77-Simulation wird an dem betreffenden Optokoppler die lokale Zeitinformation in einem Datentelegramm ausgegeben. Diese Einstellung dient der Synchronisation weiterer DCF77 Funkuhren mit 1 Hz Takt Eingang wie z.B. **hopf** 6036, 4980. Das Signal kann wahlweise invertiert ausgegeben werden. Die Einstellungen für time information und cycle time sind deaktiviert.

4.2.8.2 Information über die Synchronisation (Mode 2)

Bei dieser Einstellung wird an dem Ausgang der interne Uhrenstatus (Funkbit) angezeigt. Ist der Optokoppler durchgeschaltet hat das Uhrenmodul Funkempfang. Das Abfallen des Signals bedeutet Quarzbetrieb.

Bitte beachten Sie die optionale Einstellung einer Verzögerung der Umschaltung von Funk- auf Quarzbetrieb im Dialog "DCF77-Simulation und Funkbit" in Kapitel 4.2.9.

4.2.8.3 Alarmmeldung (Mode 3)

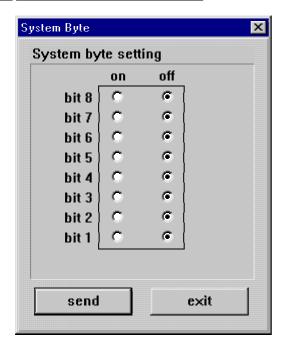
In dieser Betriebsart wird der Ausgang bei Anliegen der Versorgungsspannung durchgeschaltet. Bei auftretenden Störungen fällt das Signal ab und signalisiert damit einen Alarm.

4.2.8.4 Zyklische Impulse innerhalb 24 Stunden (Mode 4)

In diesem Mode werden zyklische Impulse mit einstellbarer Impulsbreite am Ausgang erzeugt. Folgende Impulsabstände sind möglich:

```
alle 1, 2, 3, 4, 6, 8, 12, 24 Stunden
alle 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 Minuten
alle 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 Sekunden
```

für die Einstellung 24 Stundenimpuls muss in der Gruppe **"time information"** bei allen Datenstellen eine Null angegeben werden. Die Eingaben für Tag, Monat und Jahr sind abgeschaltet. Die Impulslänge ist im Bereich von 10-2550 msec in 10 msec Schritten wählbar. Die Impulslänge sollte die Zykluszeit nicht überschreiten, da ansonsten der Ausgang dauernd durchgeschaltet bleibt. Die Signalausgabe kann invertiert werden.


4.2.8.5 Impuls pro Tag oder Datum (Mode 5)

Dieser Mode erzeugt entweder einen einmaligen Impuls pro Tag oder eine einmalige datumsabhängige Schaltzeit am Ausgang. Mit den Scroll Leisten der Gruppe "time information" wird der Ausgabezeitpunkt des Impulses eingestellt. Ist in dem Feld "day" ein anderer Wert als "00" selektiert, so wird der Optokoppler nur zum eingestellten Datum durchgeschaltet.

Die Impulslänge ist im Bereich von 10-2550 msec in 10 msec Schritten wählbar. Die Signalausgabe kann invertiert werden.

4.2.9 Systembyte Einstellungen

Mit dieser Funktion werden interne Programmfunktionen ein- bzw. ausgeschaltet. Zur Zeit ist nur Bit 1-5 mit einer Funktion belegt. Sie erreichen die Systembyte Einstellungen durch den Menüpunkt "set" und dem Eintrag "System Byte". Es erscheint der "System Byte" Dialog mit den aktuellen Einstellungen in der Uhr.

Durch Betätigen des **"send"** Schalter werden die neuen Daten in die Uhr übertragen.

(Das Bild links zeigt die Standardeinstellungen).

Bit Nr.:	Eingeschaltet	Ausgeschaltet			
8					
7	Funkbit ohne Antenne	Funkbit durch GPS-			
	immer gesetzt	Empfang gesetzt			
6	IRIG-B binäre Tages-	IRIG-B binäre Tagesse-			
	sekunden abgeschaltet	kunden zugeschaltet			
5	Zeitbasis				
4	Lokale Zeit / Sta	Lokale Zeit / Standardzeit / UTC-Zeit			
3	NGTS-Impuls	IRIG-B Ausgabe			
2	UTC IRIG-B String	lokale Zeit IRIG-B String			
1	DCF77-Simulationstakt	PPS (Sekundenimpuls)			

4.2.9.1 Einstellung Bit 1

Die Schnittstellen-Variante 4 wird als Impulsausgabe genutzt.

Der Ausgang kann dann entweder einen Sekundenimpuls oder das simulierte DCF77-Takt Signal generieren.

4.2.9.2 Einstellung Bit 2

Dieses Bit bestimmt die Basiszeit im IRIG-B Datenstring. Es kann zwischen der lokalen Zeit und UTC gewählt werden.

4.2.9.3 Einstellung Bit 3

Mit diesem Bit wird im Programmablauf die Ausgabe von IRIG-B Daten oder die Ausgabe des NGTS-Impulses angesteuert.

Für IRIG-B ist zusätzlich die Schnittstellen-Variante 5 und für den NGTS-Impuls die Schnittstellen-Variante 6 notwendig.

4.2.9.4 Einstellungen Bit 4 und 5

Mit dem Bit 4 und 5 können verschiedene Zeitbasen für die DCF77-Simulation gewählt werden.

Bit 5	Bit 4	
off	off	im simulierten DCF77-Telegramm wird die lokale Zeit als Zeitbasis verwendet. Die Zeitzonenbits ändern sich entsprechend der Standard- oder Sommerzeit. Die Zeitzonen-Umschaltung wird durch das Ankündigungsbit 1 Stunde vorher signalisiert
off	on	im simulierten DCF77-Telegramm wird die lokale Standardzeit als Zeitbasis verwendet. In den Zeitzonenbits wird kontinuierlich Standardzeit gesendet. Es erfolgt keine Information einer Zeitumschaltung
on	off	im simulierten DCF77-Telegramm wird UTC als Zeitbasis gesendet. In den Zeitzonenbits müsste normalerweise die Information UTC enthalten sein. Da viele DCF77-Auswerteprogramme dies als Fehler interpretieren werden auch bei der Einstellung UTC die Zeitzonenbits als Standardzeit gesendet

4.2.9.5 Einstellungen Bit 6

Mit diesem Bit können die laufenden binären Tagessekunden im IRIG-B String ab- bzw. zugeschaltet werden.

4.2.9.6 Einstellungen Bit 7

Von einigen Rechnern wird ein Datenstring nur dann akzeptiert, wenn das Funkbit im Statuswort gesetzt ist. Es können daher ohne Antenneninstallation im Vorfeld keine Tests mit diesen Rechnern gefahren werden. Mit Bit 7 wird ein ständiger GPS-Empfang simuliert.

Bit 7 off das Funkbit wird nur dann gesetzt, wenn GPS-Empfang vorhanden ist. Bei keinem GPS-Empfang größer der eingestellten Überwachungszeit wird es zurückgesetzt.

Bit 7 on das Funkbit wird immer gesetzt, auch wenn keine Antenne angeschlossen ist.

HINWEIS: Das Bit 7 bleibt auch nach einem Spannungsausfall gesetzt. Bitte achten Sie darauf wenn Sie die Tests beendet haben. Wird das Bit von "off" nach "on" geschaltet, so wird das Statusbyte im angegebenen Datenstring sofort auf "Funk" gesetzt. Wird es dagegen von "on" nach "off" geschaltet, so muß ein Reset ausgeführt werden, damit im Statusbyte des ausgegebenen Datenstrings die Information "Quarz" gesetzt wird.

4.2.10 Reset Funktion

Mit dieser Funktion wird ein Neustart der Uhrenanlage ausgelöst. Die Funktion ändert die zuvor vorgenommenen Einstellungen im Gegensatz zum Taster in der Frontblende nicht. Sie sollten einen Reset nach vollständiger Eingabe aller zur beschleunigten Erstsynchronisation erforderlichen Werte (Uhrzeit, Differenzzeit und Position) ausführen.

Sie aktivieren den Reset durch den Menüpunkt "set" und dem Eintrag "Reset Clock". Es erscheint der "Reset" Dialog. Durch Betätigen des "send" Schalter wird in der Uhr ein Reset ausgelöst. Im "Receive Buffer" wird diese Aktion mit der Meldung "Reset Activated" bestätigt.

4.3 Überwachung des GPS-Empfänger

Sie können die internen Zeitdaten mit diesen Funktionen zur Anzeige bringen.

4.3.1 Uhrzeit und Datum

Die Uhrzeit-Anzeigen-Funktion wird mit dem Menüpunkt "show" und dem Eintrag "time and date" aktiviert. Der Menüpunkt ist unterteilt in "local" und "UTC" time. Je nach Auswahl erscheint der "time and date" Dialog mit den entsprechenden Informationen. Die Uhrzeit wird in Abständen von 200 msec neu angefragt.

4.3.2 Umschaltzeitpunkte

Die Umschaltzeit-Anzeigen-Funktion wird mit dem Menüpunkt "show" und dem Eintrag "changeover date" aktiviert. Nach Anwahl erscheint der "show changeover date" Dialog mit den entsprechenden Informationen.

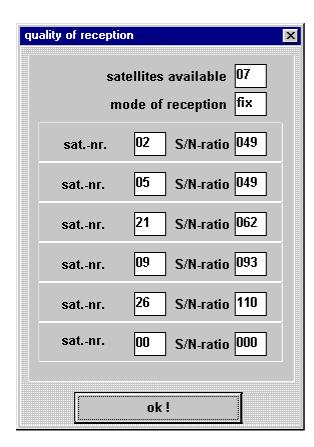
4.3.3 Differenz UTC/Local

Die Differenzzeit-Anzeigen-Funktion wird mit dem Menüpunkt "show" und dem Eintrag "difference UTC/Local" aktiviert. Es erscheint der "difference UTC/Local" Dialog mit den entsprechenden Informationen.

Die Daten werden nur einmal angefragt und anschließend dargestellt.

4.3.4 Position

Mit dieser Funktion wird die eingegebene bzw. die durch GPS aktualisierte Position angezeigt. Es werden noch 2 Nachkommastellen der Positionsminuten angezeigt.


Die Position-Anzeigen-Funktion wird mit dem Menüpunkt **"show"** und dem Eintrag **"position"** aktiviert. Es erscheint der **"position"** Dialog mit den entsprechenden Informationen. Die Positionsdaten werden nur einmal angefragt und anschließend dargestellt.

4.3.5 Empfangsqualität

Für die Synchronisation der Uhr ist der Empfang von mind. 4 Satelliten notwendig. Im optimalen Zustand befinden sich 9-10 Satelliten im Sichtbereich der Antenne, von denen 6 Satelliten parallel empfangen werden können.

Mit Hilfe der Menüanwahl "quality of reception" im Show-Menü wird angezeigt wie viel Satelliten im Sichtbereich liegen, welche Satelliten empfangen werden und ein relatives Maß für die Empfangsleistung. Dieser Aufruf ist speziell bei der Installation der Anlage hilfreich. Nach Anwahl des Menüpunktes erscheint folgendes Bild:

Unter "satellites available" erscheint danach die Anzahl der Satelliten, die für die Antennenposition an diesem Standort sichtbar sind. Unter "mode of reception" steht die eingestellte Betriebsart.

Es können sechs Satelliten empfangen und angezeigt werden.

Die Zahlen in den Feldern sat.-nr. ist die Satellite-Pseudo-Random-Number. Die Satelliten werden nicht mit 1, 2, 3 usw. bezeichnet, sondern mit der Pseudo-Random-Number unter der der Satellit seine Information abstrahlt. Bei Ausfall eines Satelliten kann ein Reservesatellit unter gleicher Nummer aktiviert werden.

Die Zahlen in den Feldern **S/N-Ratio** geben das Signal/Rauschverhältnis als relative Größe an. Sie kann sich zwischen 0 - 255 bewegen.

Nach der ersten Installation kann es bis zu 1 Stunde dauern bevor etwas ins Anzeigebild geschrieben wird. Dies ist abhängig von den Startinformationen, die das System erhält (siehe Programmierung Zeit, Position) sowie von der Antennenposition z.B. nur halber Sichtbereich des Himmels.

Bei schlechten Signal/Rauschverhältnissen liegen die Werte bei 10 - 30 Bei ausreichenden Signal/Rauschverhältnissen liegen die Werte bei 30 - 70 Bei guten Signal/Rauschverhältnissen liegen die Werte bei 70 - 140

4.3.5.1 Fehlerinterpretation des Empfangs

Mit dem Anzeigebild der Satelliten können Fehler des Empfangssystems erkannt werden.

Beispiel 1

Es erscheint nach der ersten Installation auch nach mehreren Stunden kein Satellit in der Anzeige.

Fehlermöglichkeiten:

- · das Antennenkabel ist defekt
- · das Antennenkabel ist nicht angeschlossen
- · die Antenne ist defekt
- · der Blitzschutz ist defekt

Beispiel 2

Es sind 7 Satelliten im möglichen Sichtbereich, aber maximal 2 erscheinen im Anzeigebild.

Fehler

• der Sichtbereich der Antenne auf den Himmel ist zu klein

Beispiel 3

Es erscheinen 9 Satelliten im Sichtbereich, 6 sind erfasst aber die Anlage synchronisiert nicht da sich die Signal/Rauchverhältnisse alle zwischen 10-25 bewegen.

Fehlermöglichkeiten:

- das Kabel ist zu lang
- · die BNC-Stecker sind schlecht montiert
- das Kabel ist gequetscht oder geknickt
- · das Kabel hat den falschen Impedanzwert

Beispiel 4

Die Anlage funktionierte bisher einwandfrei. Es erscheinen 7 Satelliten im Sichtbereich - keiner ist erfasst - die Anlage hatte seit mehreren Tagen kein Empfang.

Fehlermöglichkeiten:

- das Kabel ist beschädigt worden
- · es gab einen Blitzeinschlag und der Blitzschutz ist defekt
- Antenne defekt
- Empfänger defekt
- Spannungsversorgung defekt

4.3.6 Firmware Revision

Unter diesem Menüpunkt im **"show"** Menü kann der Programmstand und das Programmdatum des angeschlossenen Gerät ausgelesen werden.

5 Signal- und Datenausgabe

5.1 IRIG-B Signal

Bei der Ausführung IRIG-B wird an der entsprechenden BNC-Buchse das IRIG-B Signal ausgegeben, dessen Trägerfrequenz 1 kHz beträgt. Die Amplitude ist auf 3,5 V_{ss} an 600 Ohm fest eingestellt. Das Tastverhältnis der Trägerabsenkung beträgt 1:3. Der minimale Anschlusswiderstand darf 50 Ohm nicht unterschreiten. Bei 50 Ohm sinkt die Amplitude auf ca. 2,8 V_{ss} ab.

An Stift 4 des 9-poligen SUB-D Steckers kann der IRIG-B Takt im TTL-Pegel abgegriffen werden. Mit Bit 2 im Systembyte kann die Basiszeit für den IRIG-B Ausgang gewählt werden.

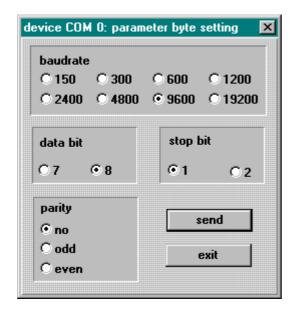
Bit 2 = off lokale Zeit
Bit 2 = on UTC

5.1.1 Stringaufbau

Im IRIG-B String sind folgende Zeitinformationen enthalten:

•	Sekunden	2-stellig BCD
•	Minuten	2-stellig BCD
•	Stunden	2-stellig BCD
•	laufender Jahrestag	3-stellig BCD
•	laufende Tagessekunde	17 Bit binär

Die meisten IRIG-B Empfänger werten die laufenden Tagessekunden nicht aus. Mit Bit 6 im Systembyte können die laufende Tagessekunden zu- oder abgeschaltet werden.


5.2 Konfiguration der seriellen Schnittstellen

Die Satellitenfunkuhr ist mit zwei unabhängigen seriellen Schnittstellen ausgerüstet. Nachfolgend als "Device Com 0" und "Device Com 1" bezeichnet. Schnittstelle 0 ist in der Standardkonfiguration als RS232c (V.24) und Schnittstelle 1 als RS422 (V.11) ausgelegt. Die Schnittstellen können zur Übertragung von Zeittelegrammen an anderen Rechnern benutzt werden.

Als Standard-Zeittelegramm werden die **hopf** 6021, Siemens MADAM-S und SINEC H1, IBM 9037 / Sysplex Timer, NGTS- und ABB-T-String Datentelegramme unterstützt. Kundenspezifische Telegramme sind auf Anfrage möglich. Die folgenden Einstellungen können getrennt für jede serielle Schnittstelle vorgenommen werden.

5.2.1 Einstellung der seriellen Parameter

Sie erreichen die Einstellung für Baudrate, Datenbit, Stoppbit und Parity durch Anwahl des Menü "communication" und "serial parameter". Es erscheint der Schnittstellenparameter-Dialog für die ausgewählte Schnittstelle.

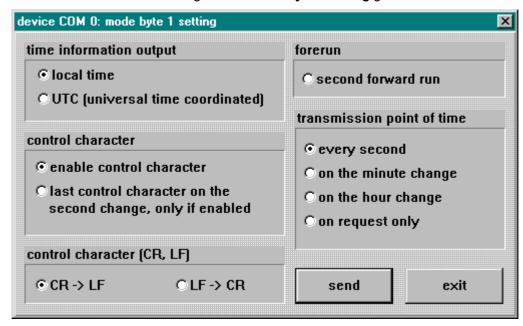
Nach der gewünschten Eingabe muß die **[send]** Taste betätigt werden. Damit werden die neuen Parameter in die Uhr übertragen. Wenn die Daten angenommen wurden, erscheint ein Dialogfenster mit dem Hinweis:

serial parameter

change from: PAR: 09600,8,N,1

to: PAR: 19200,7,N,2

Damit ist die Einstellung abgeschlossen. Die neuen Parameter werden bei erfolgreicher Übertragung gleichzeitig im Remote-Rechner eingestellt. Falls Probleme bei der Übertragung auftraten, erscheint nach ca. 15 Sekunden ein Dialogfenster mit dem Hinweis:


GPS-System did not accept serial parameter

In diesem Fall siehe Pkt.: 3.6.4 Mögliche Fehlerursachen

5.3 Konfiguration des Datentelegramms (Modebyte 1)

Die über Satelliten empfangene Zeitinformation kann in verschiedene "Datentelegramme" mit Angabe des internen Status der Uhr über die Schnittstellen ausgegeben werden. Der Anwender hat damit die Möglichkeit angeschlossene Rechenanlagen mit der atomgenauen Zeit zu synchronisieren. Der jeweils gewünschte Ausgabezeitpunkt, die Zeitinformation und die verwendeten Steuerzeichen können durch Angaben im **Modebyte 1 Dialog** gewählt werden.

Sie erreichen die Setz-Funktion für das **Modebyte 1** durch Anwahl des Menü **"communication"** und **"mode byte 1"**. Es erscheint der Modebyte 1 Dialog mit den aktuellen Einstellungen für die ausgewählte Schnittstelle. Sie können jetzt den Ausgabemechanismus nach Ihren Vorgaben konfigurieren. Sie starten die Übertragung zur Uhr mit dem **"send"** Schalter. Wenn die Daten angenommen wurden erscheint ein Dialogfenster mit dem Hinweis:

mode byte configuration

change from: MOD:1,0,1,1,0,0,0,0 to: MOD:1,1,1,1,1,0,0,0

damit ist die Einstellung abgeschlossen. Falls Probleme bei der Übertragung auftraten, erscheint nach ca. 15 Sekunden ein Dialogfenster mit dem Hinweis:

GPS-System did not accept serial parameter

In diesem Fall siehe Pkt.: 3.6.4 Mögliche Fehlerursachen

Nachfolgend werden die möglichen Einstellungen beschrieben

5.3.1 Time information output

In der Gruppe **"time information output"** wird die Zeitbasis gewählt, die im Ausgabetelegramm benutzt wird. Bei der Anwahl **"local time"** wird die Zeitinformation (UTC \pm Differenzzeit) inkl. eines evtl. vorhandenen Sommerzeitoffset ausgegeben. Die Anwahl von **"UTC"** stellt das Ausgabetelegramm auf **UTC** (universal time coordinated) Weltzeit ein.

5.3.2 Control Character

Ist die Checkbox "enable control character" in der Gruppe "control character" aktiviert, so werden dem Ausgabetelegramm zu Beginn ein STX (0x02) und am Ende ein ETX (0x03) zugefügt. Wenn die Einstellung "last control character on the second change" aktiviert wurde, dann wird das Schlusszeichen ETX genau zur Flanke des nächsten Sekundenwechsel übertragen. Dieser Mechanismus dient zur genauen Berechnung der Zeit im zu synchronisierenden Rechner.

Beispiel:

Bei der Einstellung **8 Bit, no Parity, 1 Stoppbit** werden für die Übertragung eines Zeichen genau 10 Bit gesendet. Mit **9600 Baud** benötigt ein Zeichen demnach ca. 1 msec für den Transfer. Der auswertende Rechner muss diesen Wert plus die Latentzeit für das Reagieren auf ein empfangenen Zeichen als Offset zur Ermittlung seiner interne Zeit addieren.

Achtung:

In einigen Datenstrings ist ETX und STX standardmäßig nicht enthalten. In diesen Fällen wird bei der Einstellung "last control character on the second change" das letzte Zeichen zum Sekundenwechsel gesendet (z.B. **T-String** letztes Zeichen **LF**).

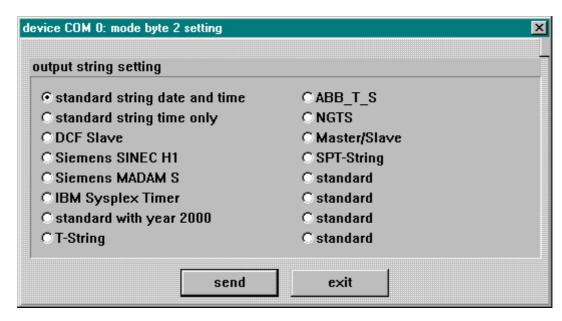
5.3.3 Control Character (CR, LF)

Die Ausgabe der Steuerzeichen CR (Zeilenumbruch) und LF (Zeilenvorschub) kann in der Gruppe "control character (CR, LF)" vertauscht werden.

5.3.4 Forerun

Bei Aktivierung der Einstellung in der Gruppe **"forerun"** wird das ausgegebene Datentelegramm mit einer Sekunde Vorlauf ausgegeben. Diese Einstellung ist in Verbindung mit der Übertragung des Schlußzeichens **"last control character on the second change"** hilfreich, da bei Eintreffen dieses Zeichens das vorhandene Telegramm gültig wird.

5.3.5 Transmission Point of Time


In der Gruppe **"transmission point of time"** wird der Ausgabezeitpunkt für das Telegramm gewählt. Folgende Einstellungen sind möglich:

every second = zum Sekundenwechsel
on the minute change = zum Minutenwechsel
on the hour change = zum Stundenwechsel
on request only = Ausgabe nur nach Anfrage

5.3.6 Telegrammauswahl mit Modebyte 2

Sie erreichen die Setz-Funktion für das **Modebyte 2** durch Anwahl des Menu **"communication"** und **"mode byte 2"**. Es erscheint der Modebyte 2 Dialog mit der aktuellen Einstellung für die ausgewählte Schnittstelle.

Nach Auswahl des gewünschten Telegramms durch Anklicken der jeweiligen Check Box starten Sie die Übertragung zur Uhr mit dem **[send]** Schalter. Wenn die Daten angenommen wurden erscheint ein Dialogfenster mit dem Hinweis:

mode byte 2 configuration old: MO1:1,0,1,1,0,0,0,0 new: MO1:1,1,1,1,1,0,0,0

damit ist die Einstellung abgeschlossen. Bei Telegrammen, die mit festen Einstellungen für Parameter und Telegrammkonfiguration arbeiten, erscheint zusätzlich der Hinweis, dass diese Einstellungen vorgenommen wurden:

Parameter settings changed (Parameter wurden geändert)
Mode byte 1 changed (Konfiguration wurde geändert)

Falls Probleme bei der Übertragung auftreten erscheint nach ca. 15 Sekunden ein Dialogfenster mit dem Hinweis:

GPS-System did not accept serial parameter

In diesem Fall siehe Pkt.: 3.6.4 Mögliche Fehlerursachen

In den nachfolgenden Kapiteln wird der Aufbau der einzelnen Telegramme beschrieben.

5.4 Datenformat der seriellen Übertragung

Die Daten werden in ASCII als BCD Werte gesendet und können mit jedem Terminalprogramm dargestellt werden (Beispiel TERMINAL.EXE unter Windows). Folgende Steuerzeichen aus dem ASCII-Zeichensatz werden u.U. im Telegrammaufbau verwendet:

\$20 = Space (Leerzeichen)

\$0D = CR (carriage return)

\$0A = LF (line feed)

\$02 = STX (start of text)

\$03 = ETX (end of text)

HINWEIS: STATUSWERTE SIND GESONDERT AUSZUWERTEN (SIEHE TELEGRAMMAUFBAU).

5.5 Serielles Anfragen

Die serielle Datenausgabe auf Anfrage mit ASCII Steuerzeichen funktioniert nicht, wenn die sekündliche Datenausgabe aktiviert ist.

5.5.1 Serielles Anfragen bei Einstellung Standardstring 6021

Bei eingestelltem Datentelegramm 6021 und Jahr 2000 kann eine Datenausgabe durch Anfrage des externen Rechners gestartet werden. Folgende Zeichen lösen eine Übertragung aus:

ASCII "U" -- für Uhrzeit (Local-Time)

ASCII "D" -- für Uhrzeit / Datum (Local-Time)

ASCII "G" -- für Uhrzeit / Datum (UTC-Time)

Das System antwortet innerhalb von 1 msec mit dem entsprechenden Datenstring.

Oft ist dies für den anfragenden Rechner zu schnell, es besteht daher die Möglichkeit eine Antwortverzögerung in 10 msec Schritten bei der Anfrage über Software zu realisieren. Für das verzögerte Senden des Datenstring werden die Kleinbuchstaben "u, d, g" mit einem zweistelligen Multiplikationsfaktor vom anfragenden Rechner an die Uhr übertragen.

Der Multiplikationsfaktor wird von der Uhr als Hexadezimalwert interpretiert.

Beispiel:

Der Rechner sendet ASCII u05 (Hex 75, 30, 35)

Die Uhr antwortet nach 50 Millisekunden mit dem Telegramm nur Uhrzeit (Local Time).

Der Rechner sendet ASCII gFF (Hex 67, 46, 46)

Die Uhr sendet nach 2550 Millisekunden das Telegramm Uhrzeit / Datum (UTC-Time).

5.5.2 Serielles Anfragen bei MADAM-S

Bei eingestellter Ausgabe MADAM-S kompatibel kann nur mit den Zeichenketten:

:ZSYS:

oder :WILA:

die Ausgabe auf Anfrage aktiviert werden.

HINWEIS:

BEI AUSGABE AUF ANFRAGE SOLLTE DIES IM MODEBYTE 1 EINGESTELLT SEIN, AN-SONSTEN KANN ES DURCH EINE LAUFENDE ZYKLISCHE AUSGABE ZU VERZÖGERUN-GEN IN DER ANTWORT KOMMEN.

5.5.3 Serielles Anfragen bei T-String, ABB-S-T und NGTS

Bei diesen Telegrammen wird eine Ausgabe durch Senden des ASCII Zeichen "T" ausgelöst.

5.5.4 Serielles Anfragen bei SINEC H1

Bei diesem Telegramm wird eine Ausgabe durch Senden des ASCII Zeichen "?" ausgelöst.

HINWEIS:

BEI AUSGABE AUF ANFRAGE SOLLTE DIES IM MODEBYTE 1 EINGESTELLT SEIN, ANSONSTEN KANN ES DURCH EINE LAUFENDE ZYKLISCHE AUSGABE ZU VERZÖGERUNGEN IN DER ANTWORT KOMMEN.

6 Datentelegramme

6.1 Allgemeines zur seriellen Datenausgabe der 6870

Karte 4465

Die Steuerzeichen STX und ETX werden nur übertragen wenn im **Modebyte 1** die Ausgabe **"e-nable control character"** eingestellt wurde. Andernfalls entfallen diese Steuerzeichen.

Bei Einstellung ETX zum Sekundenwechsel entsteht je nach Baudrate eine Übertragungslücke bis zu 970 msec. Beachten Sie dies bei der Programmierung eines Time-Out auf der Empfangsseite.

Bei allen Datenstrings kann die Ausgabe der Steuerzeichen CR und LF mit **Modebyte 1** vertauscht werden.

Die gesendeten Datenstrings sind mit den Datenstrings folgender **hopf** Funkuhrenkarten kompatibel:

Standard mit Steuerzeichen

Karte 6020/6021 Standard mit Steuerzeichen
Karte 6025/6027 Standard mit Steuerzeichen (nur String 6021)
Karte 7200/7201 Standard mit Steuerzeichen
Karte 7220/7221 Standard mit Steuerzeichen
Karte 7240/7245 Standard mit Steuerzeichen
Karte 6840/6841 Standard mit Steuerzeichen

6.2 Datentelegramm 6870/6021 Uhrzeit und Datum

Ifd. Zeichennr.:	Bedeutung	
1	STX (Start of Text)	
2	Status (interner Zustand der Uhr)	; siehe 6.2.2
3	Wochentag (1=Montag 7=Sonntag)	; siehe 6.2.2
	Bei UTC-Zeit wird Bit 3 im Wochentag auf 1 gesei	tzt
4	10er Stunden	
5	1er Stunden	
6	10er Minuten	
7	1er Minuten	
8	10er Sekunden	
9	1er Sekunden	
10	10er Tag	
11	1er Tag	
12	10er Monat	
13	1er Monat	
14	10er Jahr	
15	1er Jahr	
16	LF (Linie Feed)	; siehe 6.1
17	CR (Carriage Return)	; siehe 6.1
18	ETX (End of Text)	

6.2.1 Datentelegramm 6870/6021 nur Uhrzeit

Ifd. Zeichennr.:	Bedeutung				
1	STX (Start of Text)				
2	10er Stunden				
3	1er Stunden				
4	10er Minuten				
5	1er Minuten	1er Minuten			
6	10er Sekunden				
7	1er Sekunden				
8	LF (Linie Feed)	; siehe 6.1			
9	CR (Carriage Return) ; siehe 6.1				
10	ETX (End of Text)				

6.2.2 Status- und Wochentagnibble im Datentelegramm 6870/6021 Standard

Das zweite und dritte ASCII-Zeichen im Telegramm beinhalten den Status und den Wochentag. Der Status wird binär ausgewertet. Aufbau dieser Zeichen:

	b3	b2	b1	b0	Bedeutung
Statusnibble:	Х	Х	Х	0	keine Ankündigungsstunde
	х	Х	Х	1	Ankündigung (SZ-WZ-SZ)
	х	Х	0	Χ	Winterzeit (WZ)
	х	Χ	1	Х	Sommerzeit (SZ)
	0	0	Х	Х	Uhrzeit/Datum ungültig
	0	1	Х	Χ	Quarzbetrieb
	1	0	Х	Х	Funkbetrieb
	1	1	Х	Х	Funkbetrieb (hohe Genauigkeit)
Wochentagnibble:	0	Х	Х	Х	MESZ/MEZ
	1	Χ	Х	Х	UTC-Zeit
	х	0	0	1	Montag
	х	0	1	0	Dienstag
	х	0	1	1	Mittwoch
	х	1	0	0	Donnerstag
	х	1	0	1	Freitag
	х	1	1	0	Samstag
	х	1	1	1	Sonntag

6.2.3 Beispiel eines gesendeten Datentelegramm 6870/6021 (Standard)

(STX)E3123456170496(LF)(CR)(ETX)

Funkbetrieb (hohe Genauigkeit)
Sommerzeit
keine Ankündigung
Es ist Mittwoch 17.04.96 - 12:34:56 Uhr.
() - ASCII-Steuerzeichen z.B. (STX)

6.3 Datentelegramm DCF-Slave

Zur Synchronisation von **hopf** DCF-Slave Systemen wird dieser Datenstring verwendet. Er unterscheidet sich gegenüber dem Standard Datenstring 6870/6021 nur im Statusbyte.

Ifd. Zeichennr.:	Bedeutung	Wert (Wertebereich)	
1	STX (start of text)	\$02	
2	Status	\$30-39, \$41-46	; siehe 6.3.1
3	Wochentag	\$31-37	; siehe 6.3.1
4	10er Stunde	\$30-32	
5	1er Stunde	\$30-39	
6	10er Minute	\$30-35	
7	1er Minute	\$30-39	
8	10er Sekunde	\$30-36	
9	1er Sekunde	\$30-39	
10	10er Tag	\$30-33	
11	1er Tag	\$30-39	
12	10er Monat	\$30-31	
13	1er Monat	\$30-39	
14	10er Jahr	\$30-39	
15	1er Jahr	\$30-39	
16	LF (line feed)	\$0A	; siehe 6.1
17	CR (carriage return)	\$0D	; siehe 6.1
18	ETX (end of text)	\$03	

6.3.1 Status im Datentelegramm DCF-Slave

	b3	b2	b1	b0	Bedeutung
Statusnibble:	Х	Х	Х	0	keine Ankündigungsstunde
	Х	Χ	Х	1	Ankündigung (SZ-WZ-SZ)
	Х	Χ	0	Х	Winterzeit (WZ)
	Х	Χ	1	Χ	Sommerzeit (SZ)
	х	0	Х	Χ	keine Ankündigung Schaltsekunde
	Х	1	Х	Х	Ankündigung Schaltsekunde
	0	Χ	Х	Χ	Funkbetrieb
	1	Χ	Х	Х	Funkbetrieb (hohe Genauigkeit)
Wochentagnibble:	0	0	0	1	Montag
	0	0	1	0	Dienstag
	0	0	1	1	Mittwoch
	0	1	0	0	Donnerstag
	0	1	0	1	Freitag
	0	1	1	0	Samstag
	0	1	1	1	Sonntag

6.3.2 Beispiel eines gesendeten Datenstring DCF-Slave

(STX)83123456030196(LF)(CR)(ETX)

Funkbetrieb, keine Ankündigung, Winterzeit Es ist Mittwoch 03.01.96 - 12:34:56 Uhr

6.3.3 Einstellung

Zur Synchronisation der **hopf** Slave-Systeme muss folgende Einstellung eingehalten werden:

- Ausgabe jede Minute
- Ausgabe Sekundenvorlauf
- Ausgabe mit Steuerzeichen
- ETX zum Sekundenwechsel
- 9600 Baud, 8 Bit, 1 Stoppbit, kein Parity
- LF, CR

Bei diesen Einstellungen erfolgt eine optimale Regelung der Zeitbasis in den Slave-Systemen.

6.4 Datentelegramm SINEC H1

Die Steuerzeichen STX und ETX werden nur übertragen wenn die Ausgabe mit Steuerzeichen eingestellt wurde. Andernfalls entfallen diese Steuerzeichen. Bei der Einstellung ETX verzögert wird das letzte Zeichen (ETX) genau zum nächsten Sekundenwechsel übertragen.

Der Datenstring kann mit "?" angefragt werden.

Ifd. Zeichennr.:	Bedeutung	Wert (Wertebereich)	
1	STX (start of text)	\$02	
2	"D" ASCII D	\$44	
3	":" Doppelpunkt	\$3A	
4	10er Tag	\$30-33	
5	1er Tag	\$30-39	
6	"." Punkt	\$2E	
7	10er Monat	\$30-31	
8	1er Monat	\$30-39	
9	"." Punkt	\$2E	
10	10er Jahr	\$30-39	
11	1er Jahr	\$30-39	
12	";" Semikolon	\$3B	
13	"T" ASCIIT	\$54	
14	":" Doppelpunkt	\$3A	
15	Wochentag	\$31-37	
16	";" Semikolon	\$3B	
17	"U" ASCII U	\$55	
18	":" Doppelpunkt	\$3A	
19	10er Stunden	\$30-32	
20	1er Stunden	\$30-39	
21	"." Punkt	\$2E	
22	10er Minuten	\$30-35	
23	1er Minuten	\$30-39	
24	"." Punkt	\$2E	
25	10er Sekunden	\$30-36	
26	1er Sekunden	\$30-39	
27	";" Semikolon	\$3B	
28	"#" oder Space	\$23 / \$20	; siehe 6.4.1
29	"*" oder Space	\$2A / \$20	; siehe 6.4.1
30	"S" oder Space	\$53 / \$20	; siehe 6.4.1
31	"!" oder Space	\$21 / \$20	; siehe 6.4.1
32	ETX (end of text)	\$03	

6.4.1 Status im Datentelegramm SINEC H1

Die Zeichen 28-31 im Datentelegramm SINEC H1 geben Auskunft über den Synchronisationsstatus der Uhr.

Hierbei bedeuten:

Zeichen Nr.: 28 = "#" keine Funksynchronisation nach Reset, Uhrzeit ungültig Space

Funksynchronisation nach Reset, Uhr min. im Quarzbetrieb

Zeichen Nr.: 29 = "*" Uhrzeit vom internen Quarz der Uhr

Uhrzeit über Funkempfang Space

Zeichen Nr.: 30 = "S" Sommerzeit

Winterzeit Space

Zeichen Nr.: 31 = "!" Ankündigung einer W/S oder S/W Umschaltung

> Space keine Ankündigung

6.4.2 Beispiel eines gesendeten Datenstring SINEC H1

(STX)D:03.01.96;T:3;U:12.34.56; _ _ _ (ETX) (_) = Space

Funkbetrieb, keine Ankündigung, Winterzeit Es ist Mittwoch 03.01.96 - 12:34:56 Uhr

6.5 Datentelegramm MADAM-S

Der Aufbau des Datentelegramm ist abhängig vom Anfragestring. Fragt der übergeordnete Rechner (PROMEA-MX) mit dem String:

:ZSYS:

an, antwortet die Uhr mit folgendem Datentelegramm:

Ifd. Zeichennr.:	Bedeutung	Wert (Wertebereich)	
1	STX (Start of Text)	\$02	
2	: Doppelpunkt	\$3A	
3	Z ASCII Z	\$5A	
4	S ASCII S	\$53	
5	Y ASCII Y	\$59	
6	S ASCII S	\$53	
7	: Doppelpunkt	\$3A	
8	Status der Umschaltung	\$00, 01, 7F	; siehe 6.5.2
9	Zeitskalenkennung	\$30-33	
10	Wochentag	\$31-37	
11	10er Jahr	\$30-39	
12	1er Jahr	\$30-39	
13	10er Monat	\$30-31	
14	1er Monat	\$30-39	
15	10er Tag	\$30-33	
16	1er Tag	\$30-39	
17	10er Stunde	\$30-32	
18	1er Stunde	\$30-39	
19	10er Minute	\$30-35	
20	1er Minute	\$30-39	
21	10er Sekunde	\$30-35	
22	1er Sekunde	\$30-39	
23	LF (Linie Feed)	\$0A	; siehe 6.1
24	CR (Carriage Return)	\$0D	; siehe 6.1
25	ETX (End of Text)	\$03	

Fragt der übergeordnete Rechner (PROMEA-MX) mit dem String:

:WILA:

an, antwortet die Uhr mit folgendem Datentelegramm:

Ifd. Zeichennr.:	Bedeutung	Wert (Wertebereich)	
1	STX (Start of Text)	\$02	
2	: Doppelpunkt	\$3A	
3	W ASCII W	\$57	
4	I ASCIII	\$49	
5	L ASCII L	\$4C	
6	A ASCII A	\$41	
7	: Doppelpunkt	\$3A	
8	Status	\$00, 01, 7F	; siehe 6.5.2
9	Zeitskalenkennung	\$30-33	
10	Wochentag	\$31-37	
11	10er Jahr	\$30-39	
12	1er Jahr	\$30-39	
13	10er Monat	\$30-31	
14	1er Monat	\$30-39	
15	10er Tag	\$30-33	
16	1er Tag	\$30-39	
17	10er Stunde	\$30-32	
18	1er Stunde	\$30-39	
19	10er Minute	\$30-35	
20	1er Minute	\$30-39	
21	10er Sekunde	\$30-35	
22	1er Sekunde	\$30-39	
23	CR (Carriage Return)	\$0D	; siehe 6.1
23	LF (Linie Feed)	\$0A	; siehe 6.1
24	ETX (End of Text)	\$03	

6.5.1 Erforderliche Einstellung bei Ausgabe MADAM-S

Der Synchronisationsmechanismus bei Ausgabe MADAM-S erfordert folgende Einstellung:

- Ausgabe zum Minutenwechsel
- Ausgabe mit Sekundenvorlauf
- Ausgabe ETX zum Sekundenwechsel
- Ausgabe mit Steuerzeichen
- Ausgabe CR/LF

6.5.2 Bedeutung der Statusnibble im Datentelegramm MADAM-S

Ankündigung einer Umschaltung (8. Byte der Übertragung)

Dieses Byte kann folgende Werte annehmen:

Null (Hex 00) keine Ankündigung

SOH (Hex 01) Ankündigung Umschaltung

Sommer-/Winterzeit

Winter-/Sommerzeit

DEL (Hex 7F) keine Funkzeit vorhanden

Zeitskalenkennung (9. Byte der Übertragung)

ASCII 0 (Hex 30) Winterzeit

ASCII 1 (Hex 31) Sommerzeit + Ankündigung

ASCII 3 (Hex 33) Sommerzeit

Das Wochentagnibble kann die Werte ASCII 1 (Hex 31 ⇔ MO) bis ASCII 7 (Hex 37 ⇔ SO) annehmen. Bei einer ungültigen Uhrzeit wird das Byte mit ASCII 0 (Hex 30) übertragen.

6.6 Datentelegramm IBM 9037 / Sysplex Timer

Für die Synchronisation eines IBM 9037 / Sysplex Timer wird dieses Protokoll benutzt. Der IBM 9037 / Sysplex Timer erwartet die Uhrzeit sekündlich an seinem Eingang. Folgende Einstellungen sind erforderlich. 9600 Baud, 8 Datenbit, Parity Odd, 1 Stoppbit, Senden auf Anfrage ohne Vorlauf und ohne Steuerzeichen. Der IBM 9037 / Sysplex Timer sendet beim Einschalten das ASCII-Zeichen "C" an die angeschlossene Funkuhr, dadurch wird das in der Tabelle aufgeführte Protokoll automatisch jede Sekunde ausgegeben.

Die Einstellung UTC oder Local Zeit ist optional.

Ifd. Zeichennr.:	Bedeutung	Wert (Wertebereich)	
1	SOH (start of header)	\$02	
2	100er lfd. Jahrestag	\$30-33	
3	10er lfd. Jahrestag	\$30-39	
4	1er lfd. Jahrestag	\$30-39	
5	": " Doppelpunkt	\$3A	
6	10er Stunde	\$30-32	
7	1er Stunde	\$30-39	
8	": " Doppelpunkt	\$3A	
9	10er Minute	\$30-35	
10	1er Minute	\$30-39	
11	": " Doppelpunkt	\$3A	
12	10er Sekunde	\$30-35	
13	1er Sekunde	\$30-39	
14	Quality Identifier	\$20, 41, 42, 43,	58
15	CR (carriage return)	\$0D	; siehe 6.1
16	LF (line feed)	\$0A	; siehe 6.1

6.6.1 Status im Datentelegramm IBM 9037 / Sysplex Timer

Das Zeichen 14 gibt Auskunft über den Synchronisationsstatus der Uhr. Nachfolgend werden die möglichen Werte und deren Bedeutung aufgelistet.

"?"	=	Fragezeichen	=	keine Funkzeit vorhanden
" "	=	Space	=	Funkzeit vorhanden
"A"	=	Hex 41	=	Quarzbetrieb seit mehr als 20 Minuten
"B"	=	Hex 42	=	Quarzbetrieb seit mehr als 41 Minuten
"C"	=	Hex 43	=	Quarzbetrieb seit mehr als 416 Minuten
"X"	=	Hex 58	=	Quarzbetrieb seit mehr als 4160 Minuten

6.6.2 Beispiel eines gesendeten Datenstring IBM 9037 / Sysplex Timer

(SOH)050:12:34:56 _ (CR) (LF) (_) = Space

Funkbetrieb, 12:34:56 Uhr, 50. Tag im Jahr

6.7 Datentelegramm 6870/6021 String 2000

Der Aufbau des Datentelegramm ist identisch mit dem Standard String 6870/6021 und unterscheidet sich nur durch die Datenstellen Jahrhundert Zehner und Einer.

Ifd. Zeichennr.:		
1	STX (Start of Text)	
2	Status (interner Zustand der Uhr)	; siehe 6.7.1
3	Wochentag (1=Montag 7=Sonntag)	; siehe 6.7.1
	Bei UTC-Zeit wird Bit 3 im Wochentag auf 1 geset	zt
4	10er Stunden	
5	1er Stunden	
6	10er Minuten	
7	1er Minuten	
8	10er Sekunden	
9	1er Sekunden	
10	10er Tag	
11	1er Tag	
12	10er Monat	
13	1er Monat	
14	10er Jahrhundert	
15	1er Jahrhundert	
16	10er Jahr	
17	1er Jahr	
18	LF (Linie Feed)	; siehe 6.1
19	CR (Carriage Return)	; siehe 6.1
20	ETX (End of Text)	

6.7.1 Datentelegramm 2000 Status- und Wochentagnibble

Das zweite und dritte ASCII-Zeichen beinhalten den Status und den Wochentag. Der Status wird binär ausgewertet. Aufbau dieser Zeichen:

	b3	b2	b1	b0	Bedeutung
Statusnibble:	Х	Х	Х	0	keine Ankündigungsstunde
	х	Х	Х	1	Ankündigung (SZ-WZ-SZ)
	х	Х	0	Χ	Winterzeit (WZ)
	х	Χ	1	Χ	Sommerzeit (SZ)
	0	0	Х	Χ	Uhrzeit/Datum ungültig
	0	1	Х	Χ	Quarzbetrieb
	1	0	Х	Χ	Funkbetrieb
	1	1	Х	Χ	Funkbetrieb (hohe Genauigkeit)
Wochentagnibble:	0	Х	Х	Х	MESZ/MEZ
	1	Х	Х	Χ	UTC-Zeit
	х	0	0	1	Montag
	х	0	1	0	Dienstag
	х	0	1	1	Mittwoch
	х	1	0	0	Donnerstag
	х	1	0	1	Freitag
	х	1	1	0	Samstag
	Х	1	1	1	Sonntag

6.7.2 Beispiel eines gesendeten Datenstring 2000

(STX)E312345603011996(LF)(CR)(ETX)

Funkbetrieb (hohe Genauigkeit) Sommerzeit keine Ankündigung Es ist Mittwoch 03.01.1996 - 12:34:56 Uhr.

() - ASCII-Steuerzeichen z.B. (STX)

6.8 Datentelegramm T-String

Der T-String kann mit allen Modi (z.B. forerun oder "last control character on the second change") gesendet werden.

Der Datenstring kann mit "T" angefragt werden.

Ifd. Zeichennr.:	Bedeutung	Wert (Wertebereich)	
1	"T" ASCILT	\$54	
2	":" Doppelpunkt	\$3A	
3	10er Jahr	\$30-39	
4	1er Jahr	\$30-39	
5	":" Doppelpunkt	\$3A	
6	10er Monat	\$30-31	
7	1er Monat	\$30-39	
8	":" Doppelpunkt	\$3A	
9	10er Tag	\$30-33	
10	1er Tag	\$30-39	
11	":" Doppelpunkt	\$3A	
12	10er Wochentag	\$30	
13	1er Wochentag	\$31-37	
14	":" Doppelpunkt	\$3A	
15	10er Stunden	\$30-32	
16	1er Stunden	\$30-39	
17	":" Doppelpunkt	\$3A	
18	10er Minuten	\$30-35	
19	1er Minuten	\$30-39	
20	":" Doppelpunkt	\$3A	
21	10er Sekunden	\$30-36	
22	1er Sekunden	\$30-39	
23	CR (carriage return)	\$0D ; s	iehe 6.1
24	LF (line feed)	\$0A ; s	iehe 6.1

6.8.1 Beispiel eines gesendeten Datenstring T-String

T:96:01:03:03:12:34:56(CR)(LF)

Es ist Mittwoch 03.01.96 - 12:34:56 Uhr

6.9 Datentelegramm ABB T S

Die Struktur des ABB_T_S Datenstring ist identisch mit der des T-Datenstring (siehe 6.8 Datentelegramm T-String). Er wird über das Mode-Byte 2 eingeschaltet.

Mit der Anwahl des Strings werden gleichzeitig die Übertragungsparameter auf folgende Werte fest eingestellt:

- 4800 Baudrate
- 7 Bit Wortlänge
- · Parity odd
- 2 Stopbits
- Ausgabe-Zeitpunkt : jede Minute

6.10 Datentelegramm TimeServ für Windows NT Rechner

Für die Synchronisation eines PC mit dem Betriebssystem Windows NT ab 3.51 wird das gleiche Protokoll wie unter Pkt. "Sysplex Timer" beschrieben benutzt. Die erforderlichen Einstellungen für die Datenausgabe sind wie folgt:

- Telegramm Sysplex Timer
- senden sekündlich
- 9600 Baud
- 8 Datenbit
- no Parity
- 1 Stoppbit
- · ohne Sekundenvorlauf
- · ohne Steuerzeichen.
- senden UTC

Zur Installation auf dem NT-Rechner wird das Programmpaket **"TimeServ"** benötigt (gehört zum Lieferumfang des Windows NT Resourcekit) oder kostenloser Download von der Microsoft Internet Seite:

ftp://ftp.microsoft.com/bussys/winnt/winnt-public/reskit/nt40

Die erforderlichen Einstellungen für die PC Software können von der **hopf** Internet Seite im Downloadbereich abgeholt werden.

http://www.hopf.com

6.11 Datenstring für NTP (Network Time Protocol)

NTP oder auch xNTP ist ein Programmpaket zur Synchronisation verschiedener Rechner- und Betriebssysteme mit Netzwerkunterstützung. Es ist der Standard für das Internet Protokoll TCP/IP (RFC-1305). Quellcode und Dokumentation sind als Freeware im Internet unter folgender Adresse erhältlich:

http://www.eecis.udel.edu/~ntp/index.html

Binärdateien für das IBM Betriebssystem AIX sind auf folgender Internetseite erhältlich:

htttp://www.hopf.com

NTP unterstützt das **hopf** Standard Protokoll wie unter Pkt. **"Datentelegramm 6870/6021"** beschrieben. Folgende Einstellungen in der Uhrenkarte sind erforderlich:

Übertragungsparameter: 9600 baud

8 DatenbitParity No1 Stoppbit

Übertragungs Mode: Datenstring 6870/6021

UTC als Zeitbasis mit Sekundenvorlauf

mit Steuerzeichen (STX...ETX)

LF..CR

mit ETX zum Sekundenwechsel (On Time Marker)

Ausgabe Uhrzeit mit Datum senden jede Sekunde

6.12 Datentelegramm NGTS-String

Der NGTS String kann mit allen Modi (z.B. forerun oder "last control character on the second change") gesendet werden.

Standardmäßig wird dieser String minütlich in der 59. Sekunde mit den Daten des nächsten Minutenwechsels übertragen. Zur genauen Synchronisation im angeschlossenen Rechner muss zusätzlich ein Minutenimpuls verwendet werden. Die Impulsbreite beträgt 10 msec. Die abfallende Flanke ist auf die Sekundenmarke synchronisiert. Die Ausgabe erfolgt an der 2. seriellen RS232 Schnittstelle. Der Impuls wird im Systembyte mit Bit 3 eingeschaltet. Als Schnittstellenvariante ist Mode 6 erforderlich.

Ifd. Zeichennr.:	Bedeutung	Wert (Wertebereich)	
1	"T" ASCILT	\$54	
3	10er Jahr	\$30-39	
4	1er Jahr	\$30-39	
6	10er Monat	\$30-31	
7	1er Monat	\$30-39	
9	10er Tag	\$30-33	
10	1er Tag	\$30-39	
13	1er Wochentag	\$31-37	
15	10er Stunden	\$30-32	
16	1er Stunden	\$30-39	
18	10er Minuten	\$30-35	
19	1er Minuten	\$30-39	
22	Status (0, 1)	\$30-31 (30 ⇒ Loc	al Time, 31 ⇒ UTC)
23	CR (carriage return)	\$0D	; siehe 6.1
24	LF (line feed)	\$0A	; siehe 6.1

6.12.1 Beispiel eines gesendeten Datenstring NGTS

T960103312340(CR)(LF)

Es ist Mittwoch 03.01.96 - 12:34 Uhr

6.13 Master/Slave-String

Mit dem Master/Slave-String können Slave-Systeme auf eine Genauigkeit von \pm 0,5 msec mit den Zeitdaten des Mastersystems synchronisiert werden. Der Unterschied zu dem DCF-Slave String besteht darin, dass die Differenzzeit zu UTC mitgesendet wird.

Anschließend an das Jahr wird die Differenzzeit in Stunden und Minuten gesendet. Die Übertragung erfolgt in BCD. Die Differenzzeit kann max. ± 11.59 Stunden betragen.

Das Vorzeichen wird als höchstes Bit in den Stunden eingeblendet.

Logisch "1" = lokale Zeit vor UTC Logisch "0" = lokale Zeit hinter UTC

Der gesamte Datenstring hat folgenden Aufbau:

Ifd. Zeichennr.:	Bedeutung	Wert (Wertebereich)	
1	STX (start of text)	\$02	
2	Status	\$30-39, \$41-46	; siehe 6.13.1
3	Wochentag	\$31-37	; siehe 6.13.1
4	10er Stunde	\$30-32	
5	1er Stunde	\$30-39	
6	10er Minute	\$30-35	
7	1er Minute	\$30-39	
8	10er Sekunde	\$30-36	
9	1er Sekunde	\$30-39	
10	10er Tag	\$30-33	
11	1er Tag	\$30-39	
12	10er Monat	\$30-31	
13	1er Monat	\$30-39	
14	10er Jahr	\$30-39	
15	1er Jahr	\$30-39	
16	10er DifZeit + Vorz. St	d. \$30,\$31,\$38,\$39	
17	1er DifZeit Stunden	\$30-39	
18	10er DifZeit Minuten	\$30-35	
19	1er DifZeit Minuten	\$30-39	
20	LF (line feed)	\$0A	; siehe 6.1
21	CR (carriage return)	\$0D	; siehe 6.1
22	ETX (end of text)	\$03	

6.13.1 Status im Datentelegramm Master/Slave

	b3	b2	b1	b0	Bedeutung
Statusnibble:	Х	Х	Х	0	keine Ankündigungsstunde
	х	Х	Х	1	Ankündigung (SZ-WZ-SZ)
	х	Х	0	Χ	Winterzeit (WZ)
	х	Х	1	Χ	Sommerzeit (SZ)
	х	0	Χ	Χ	keine Ankündigung Schaltsekunde
	х	1	Х	Χ	Ankündigung Schaltsekunde
	0	Χ	Χ	Χ	Quarzbetrieb
	1	Χ	Х	Χ	Funkbetrieb
Wochentagnibble:	0	0	0	1	Montag
	0	0	1	0	Dienstag
	0	0	1	1	Mittwoch
	0	1	0	0	Donnerstag
	0	1	0	1	Freitag
	0	1	1	0	Samstag
	0	1	1	1	Sonntag

6.13.2 Beispiel eines gesendeten Datenstring Master/Slave

(STX)831234560301968230(LF)(CR)(ETX)

Funkbetrieb, keine Ankündigung, Winterzeit Es ist Mittwoch 03.01.96 - 12:34:56 Uhr Die Differenzzeit zu UTC beträgt + 2.30 Std.

6.13.3 Einstellung

Zur Synchronisation der **hopf** Slave-Systeme muß folgende Einstellung eingehalten werden:

- Ausgabe jede Minute
- · Ausgabe Sekundenvorlauf
- Ausgabe mit Steuerzeichen
- ETX zum Sekundenwechsel
- 9600 Baud, 8 Bit, 1 Stoppbit, kein Parity
- LF, CR

Bei diesen Einstellungen erfolgt eine optimale Regelung der Zeitbasis in den Slave-Systemen von besser als \pm 1 msec und eine Nachregelung des Quarzes für den Freilaufbetrieb auf \pm 1 ppm.

6.14 SPT-String

Der SPT-String ist ein Datenstring der jede Minute ausgesendet wird. Der Sendezeitpunkt ist so gewählt, dass die Mitte des ersten Stoppbits vom Synchronisationszeichen zeitlich genau der 2. Sekunde einer Minute entspricht.

Das Telegramm muss mit folgenden Parametern gesendet werden:

Baudrate: 1200Datenbit: 8Parity: evenStoppbit: 2

Telegrammaufbau.

Es werden nur binäre Werte gesendet

Ifd. Zeichennr.:	Bedeutung	Wert (Wertebereich)
1	Begrenzer Kopf	\$FF
2	Begrenzer Kopf	\$01
3	Status	\$08-17
4	Anfang	\$02
5	Wochentag	\$01-07
6	Tag	\$01-31
7	Monat	\$01-12
8	Jahr	\$00-99
9	Stunde	\$00-23
10	Minute	\$00-59
11	Sekunde	\$02
12	Ende	\$03
13	Synchronzeichen	\$16

Im Status werden einzelne Bits mit folgender Bedeutung gesendet

Bit 0	Schaltsekunde	
0	keine Schaltsekunde	
1	Schaltsekunde eingefügt	

Bit 1	Empfangszeit	
0	Empfang nicht länger als 8 Std. gestört	
1	Empfang länger als 8 Std. gestört	

Bit 2	Empfang	
0	Empfang gewährleistet	
1	Empfang gestört	

Bit 4	Bit 3	Zeit
0	0	UTC-Zeit
0	1	Winterzeit
1	0	Sommerzeit
1	1	ungültig

Bit 5	Feiertag (z.Zt. nicht benutzt)	
0		
1		

Bit 6	z.Zt. nicht benutzt	
0		
1		

Bit 7	z.Zt. nicht benutzt	
0		
1		

7 Schnittstelle und Schraubklemmen

7.1 Belegung des 9-poligen SUB-D Steckers

Die Belegung der Schnittstelle ist in sechs verschiedenen Ausführungen erhältlich. Die Schnittstellenausführung ist auf dem Typenschild unter dem Punkt "interface ver." gekennzeichnet.

Die seriellen Schnittstellensignale werden über eine Potentialtrennung an dem 9-poligen SUB-D Stecker ausgegeben.

7.1.1 Version 1 - RS232 / RS422 (Standardbelegung)

9-polige SUB-D Stecker Pin Nr.	Signalbezeichnung	
1	GND	
2	RxD (receive data) RS232	COM 0
3	TxD (transmit data) RS232	COM 0
4		
5	GND	
6	+TxD¹ (transmit data) RS422	COM 1
7	-TxD² (transmit data) RS422	COM 1
8	+RxD¹ (receive data) RS422	COM 1
9	-RxD² (receive data) RS422	COM 1

7.1.2 Version 2 - RS232 / RS232

9-polige SUB-D Stecker Pin Nr.	Signalbezeichnung	9	
1	GND		
2	RxD (receive data)	RS232	COM 0
3	TxD (transmit data)	RS232	COM 0
4			
5	GND		
6	TxD (transmit data)	RS232	COM 1
7			
8	RxD (receive data)	RS232	COM 1
9			

7.1.3 Version 3 - RS232 / TTY

9-polige SUB-D Stecker Pin Nr.	Signalbezeichnung	
1	GND	
2	RxD (receive data) RS232	COM 0
3	TxD (transmit data) RS232	COM 0
4		
5	GND	
6	TTY out +	COM 1
7	TTY out -	COM 1
8	TTY in +	COM 1
9	TTY in -	COM 1

¹ high aktiv

² low aktiv

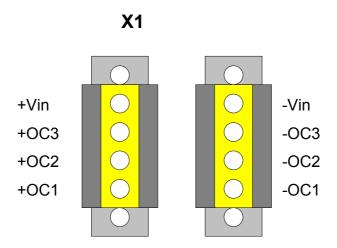
7.1.4 Version 4 - RS232 / Impuls (PPS oder DCF77-Takt)

9-polige SUB-D Stecker Pin Nr.	Signalbezeichnung	
1	GND	
2	RxD (receive data) RS232	COM 0
3	TxD (transmit data) RS232	COM 0
4		
5	GND	
6	PPS oder DCF77-Takt	
7	<pre>(s. 4.2.9 Systembyte Einstellungen Bit 1)</pre>	
8		
9		

7.1.5 Version 5 - IRIG-B mit RS232 und RS422

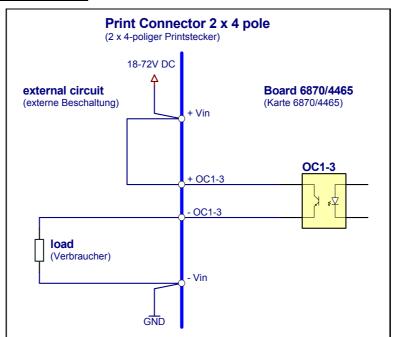
9-polige SUB-D Stecker Pin Nr.	Signalbezeichnung		
1	GND		
2	RxD (receive data)	RS232	COM 0
3	TxD (transmit data)	RS232	COM 0
4	IRIG-B Takt		
5	GND		
6	+TxD¹ (transmit data)	RS422	COM 1
7	-TxD ² (transmit data)	RS422	COM 1
8	+RxD¹ (receive data)	RS422	COM 1
9	$-RxD^2$ (receive data)	RS422	COM 1

7.1.6 Version 6 - RS232 / NGTS-Impuls

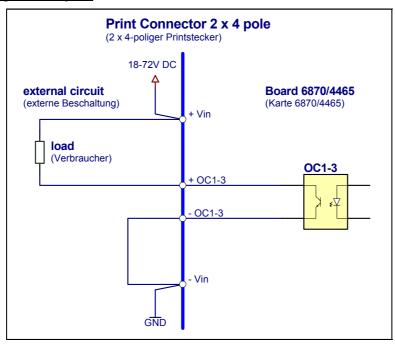

9-polige SUB-D Stecker	Signalbezeichnung		
Pin Nr.			
1	GND		
2	RxD (receive data)	RS232	COM 0
3	TxD (transmit data)	RS232	COM 0
4			
5			
6	NGTS-Impuls (s. 4.2.9 Bit 3,	5.3, 5.3.6)	
7			
8			
9			

HINWEIS: VERSIONEN 7-10 SIND ZUR ZEIT NOCH NICHT VERFÜGBAR.

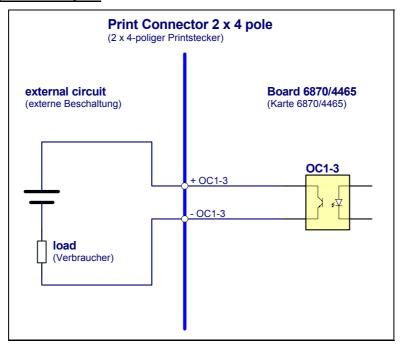
high aktiv low aktiv



7.2 Belegung der Schraubklemmen


7.2.1 Anschlußbeispiele für Optokoppler OC1-3

Aktiver, positiver Impuls



Aktiver, negativer Impuls

Passiver, positiver Impuls

8 Technische Daten

8.1 Basissystem

Betriebsspannung: 18 - 60V DC

Leistung: 6 VA

Quarzgenauigkeit: ± 0.1 ppm nach GPS-Regelung

und konstanter Temperatur

Notuhrgenauigkeit: ± 25 ppm bei 25 ° C

Wartungsfreie Notuhrpufferung: 3 Tage

MTBF: > 310.000 Std.

DCF77-Simulationsausgang / optional IRIG-B

Signalspannung bei DCF77: 3 mV $_{ss}$ an 50 Ohm Signalspannung IRIG-B bei Schnittstellenversion 5: 2,8 V $_{ss}$ an 50 Ohm

Optokoppler

Schaltleistung, ohmsche Last: 60V DC, 200 mA

Ein- / Ausschaltverzögerung: 100 / 150 µsec. bei 20 mA

Signalverzögerung bei I = 20 mA, 1m Kabellänge, 90% / 10% Signalamplitude

8.2 GPS-Empfänger

Empfängerart: 8-kanaliger Phasen-Tracking-Empfänger Auswertung: L1 Frequenz 1.575,42 MHz, C/A-Code

Empfindlichkeit: - 143 dB

Synchronisationszeit: Kaltstart: 30 min - 4 Std.

(Erste Installation ohne Positionsangabe)

Warmstart: ca. 1 min.

(Spannungsausfall < 3 Tage)

Genauigkeit interner PPS-Impuls : ± 300 nsec.

Temperaturbereich: 0 - 50° C für spezifizierte Daten

0 - 70° C mit verschlechterten

Freilaufeigenschaften

Sonderanfertigungen: Hard- und Softwareänderungen nach Kundenvorgabe möglich

HINWEIS: DIE FIRMA HOPF BEHÄLT SICH JEDERZEIT ÄNDERUNGEN IN HARD- UND SOFTWARE

VOR. DIE IN DIESER DOKUMENTATION VERWENDETEN NAMEN IBM, SIEMENS, WINDOWS ETC. SIND EINGETRAGENE WARENZEICHEN DER JEWEILIGEN UNTERNEHMEN.